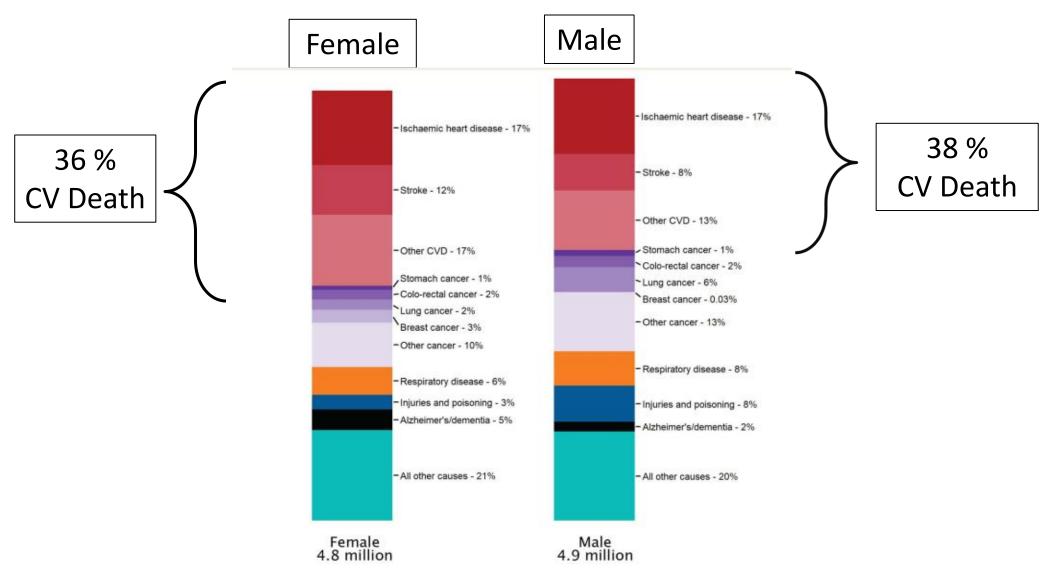
Ipertensione arteriosa e danno d'organo cardiovascolare nella donna

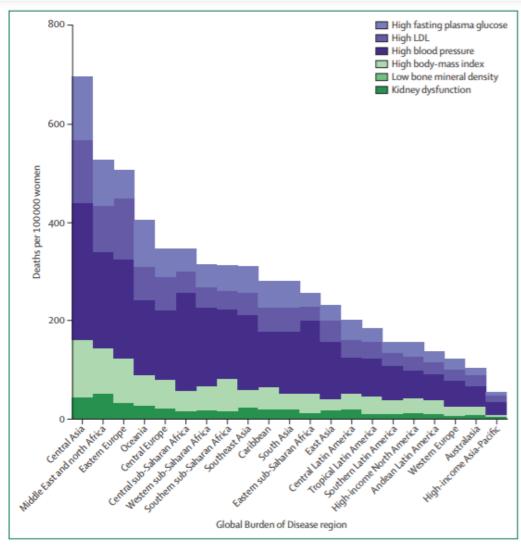
Maria Lorenza Muiesan Università di Brescia ASST Spedali Civili Brescia

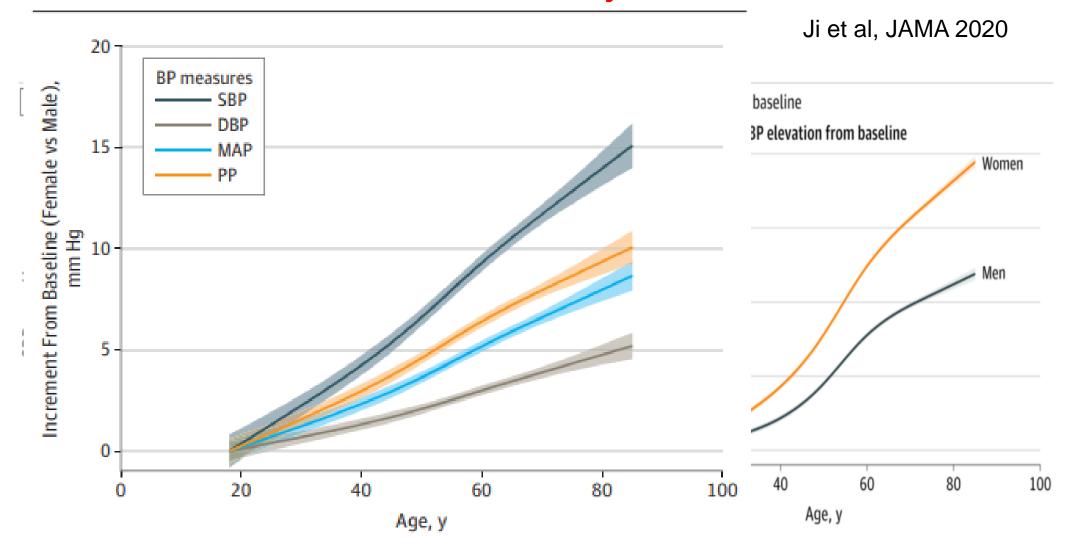


European Society of Cardiology: cardiovascular disease statistics 2021:

Timmis ate al European Heart Journal (2022) 43, 716–799

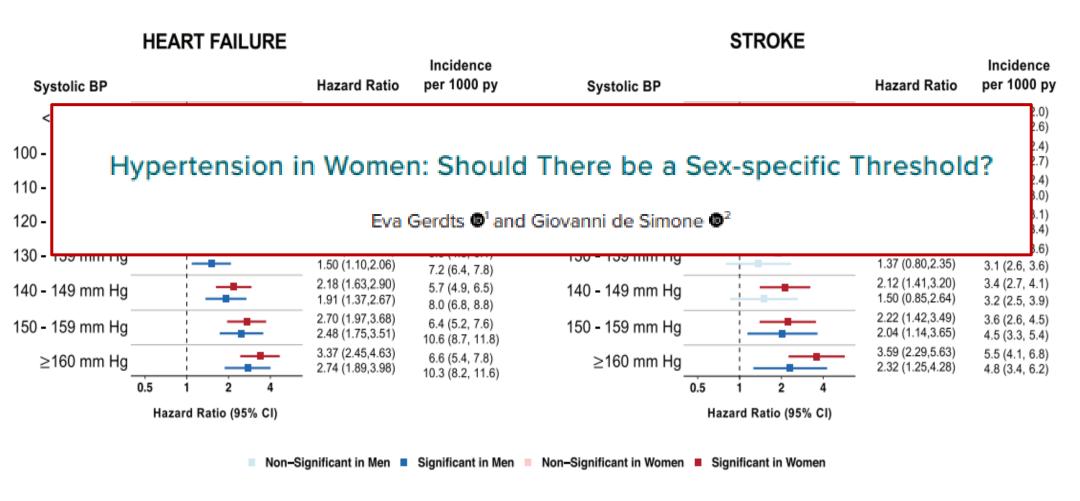
Deaths by cause for all ages in ESC member countries (latest year available)


Data source:WHO Mortality Database, https://www.who.int/healthinfo/statistics/mortality_rawdata/en

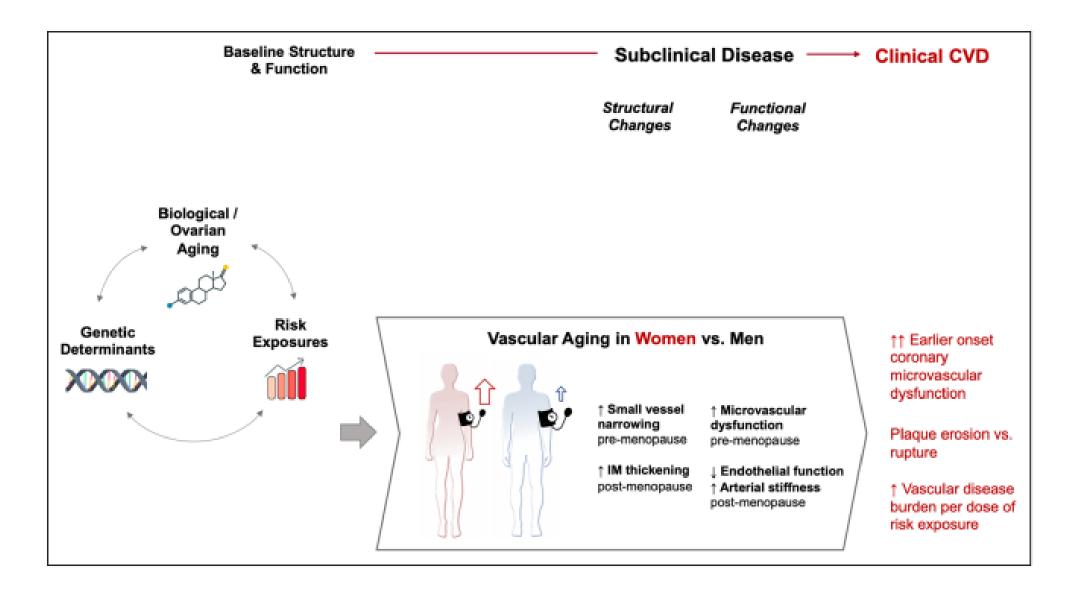

The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030

Birgit Vogel, Monica Acevedo, Yolande Appelman, C Noel Bairey Merz, Alaide Chieffo, Gemma A Figtree, Mayra Guerrero, Vijay Kunadian, Carolyn S P Lam, Angela H E M Maas, Anastasia S Mihailidou, Agnieszka Olszanecka, Jeanne E Poole, Clara Saldarriaga, Jacqueline Saw, Liesl Zühlke, Roxana Mehran

 Hypertension is the leading global risk factor for cardiovascular disease morbidity and mortality and is therefore the most substantial and neglected health burden in women.



Sex Differences in Blood Pressure Trajectories Over the Life Course


Conclusion: "In contrast with the notion that important vascular disease processes in women lag behind men by 10 to 20 years, sex-specific analyses indicate that BP measures actually progress more rapidly in women than in men, beginning early in life".

Sex related difference of BP as a risk factor

Ji et al Circulation 2021; 143:761

Cardiovascular aging phenotypes

Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update

A Guideline From the American Heart Association

Risk Status	Criteria
High risk (≥1 high-risk states)	Clinically manifest CHD
	Clinically manifest cerebrovascular disease
	Clinically manifest peripheral arterial disease
	Abdominal aortic aneurysm
	End-stage or chronic kidney disease
	Diabetes mellitus
	10-y Predicted CVD risk ≥10%

At risk (≥1 major risk factor[s])

Evidence of advanced subclinical atherosclerosis (eg, coronary calcification, carotid plaque, or thickened IMT)

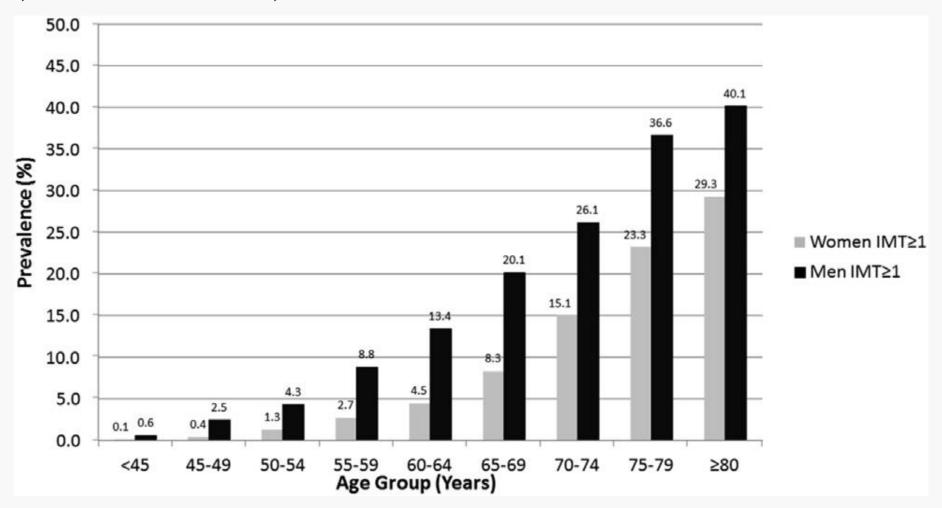
Physical inactivity

Family history of premature CVD occurring in first-degree relatives in men <55 y of age or in women <65 y of age

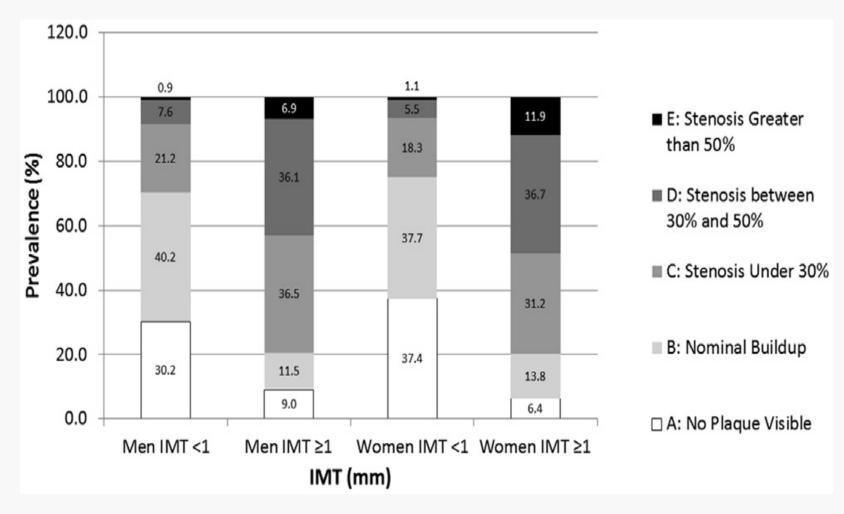

Metabolic syndrome

Evidence of advanced subclinical atherosclerosis (eg, coronary calcification, carotid plaque, or thickened IMT)

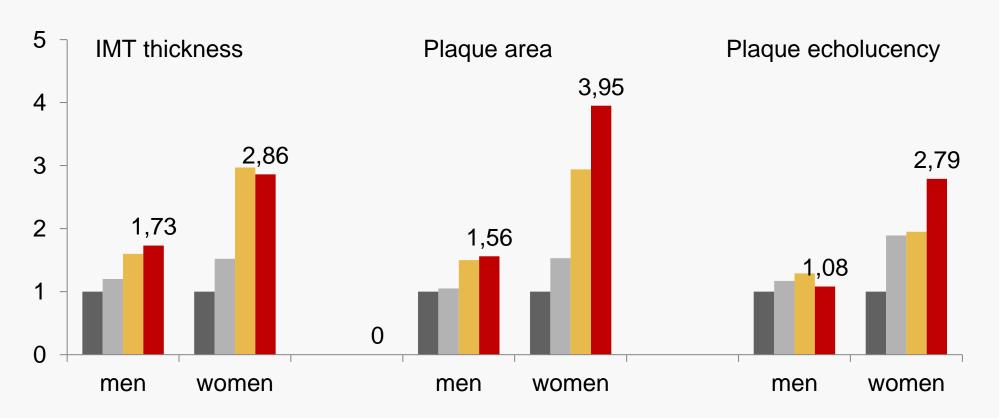
Poor exercise capacity on treadmill test and/or abnormal heart rate recovery after stopping exercise


Systemic autoimmune collagen-vascular disease (eg, lupus or rheumatoid arthritis)

History of preeclampsia, gestational diabetes, or pregnancy-induced hypertension

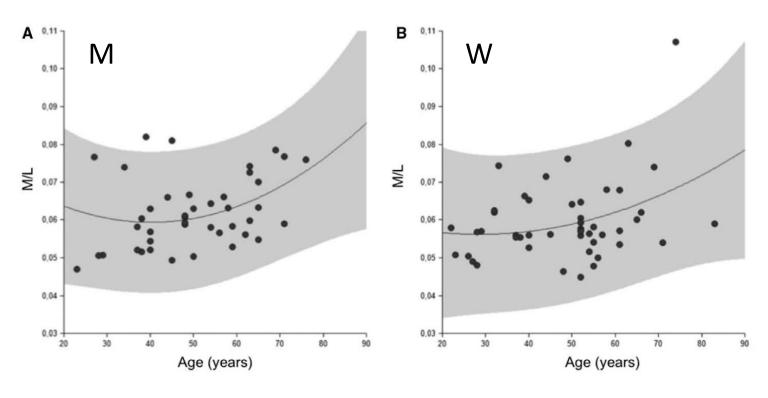

Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender

9,347 women and 12,676 men


Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender

9,347 women and 12,676 men

Carotid Atherosclerosis Is a Stronger Predictor of Myocardial Infarction in Women Than in Men A 6-Year Follow-Up Study of 6226 Persons: The Tromsø Study


IMT, total plaque area, and plaque echogenicity were measured in 2971 men and 3208 women, aged 25 - 84 years with no previous MI

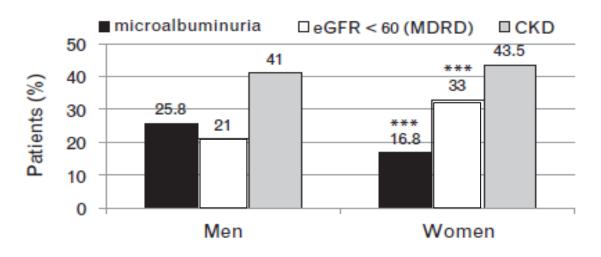
Stroke. 2007;38:2873-2880

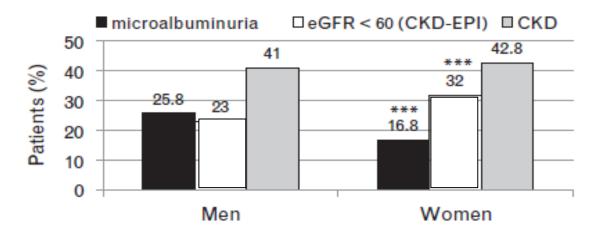
Relationship between Media/Lumen Ratio in Small Arteries and CV Risk Factors

Media/lumen in small arteries obtained in humans by biopsy 91 healthy individuals and 200 individuals with CVRF from 4 Italian SIIA centers

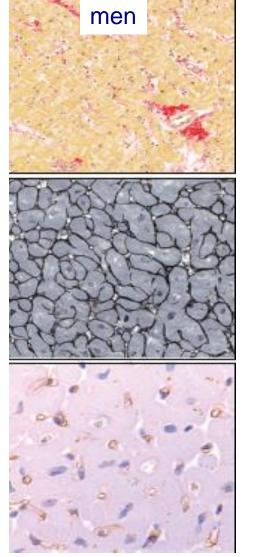
CV risk factors (hypertension, body mass index, total cholesterol, current smoking, fasting blood glucose, SBP) along with **female sex** independently influenced M/L ratio

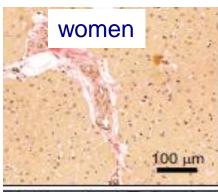
Relationship between Media/Lumen Ratio in Small Arteries and CV Risk Factors

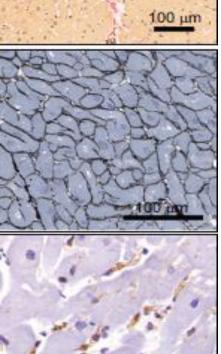

Media/lumen in small arteries obtained in humans by biopsy 91 healthy individuals and 200 individuals with CVRF from 4 Italian SIIA centers


Variable	β Coefficient	Lower 95% CL	Upper 95% CL	ſ ²	P Value		
Men							
Heart rate	0.0118	-0.036	0.0595	0.002	0.626		
Diastolic BP	0.0097	-0.0458	0.0652	0.001	0.730		
Systolic BP	0.0068	-0.0356	0.0493	0.001	0.750		
Blood glucose	0.0078	-0.0047	0.0204	0.011	0.218		
Triglycerides	0.0008	-0.0083	0.01	0.000	0.856		
Total cholesterol	0.0166	0.003	0.0302	0.044	0.017		
Smoking	1.3874	0.3793	2.3956	0.055	0.008		
ВМІ	0.1112	0.0475	0.1749	0.089	<0.001		
Women	Women						
Heart rate	-0.0185	-0.0653	0.0284	0.005	0.435		
Diastolic BP	-0.0652	-0.1326	0.0022	0.031	0.058		
Systolic BP	0.0583	0.0208	0.0958	0.079	0.003		
Blood glucose	0.0237	0.0102	0.0373	0.101	<0.001		
Triglycerides	0.0003	-0.01	0.0107	0.079	0.948		
Total cholesterol	-0.0146	-0.0295	0.0003	0.032	0.054		
Smoking	0.7507	-0.3722	1.8735	0.015	0.187		
BMI	0.0465	-0.0149	0.1079	0.019	0.136		

in men, independent determinants of age- and sex-specific M/L Z scores were BMI, T-cholesterol, and smoking, in women, blood glucose and systolic BP play a major role


Sex differences in hypertension-related renal and cardiovascular diseases in Italy: the I-DEMAND study

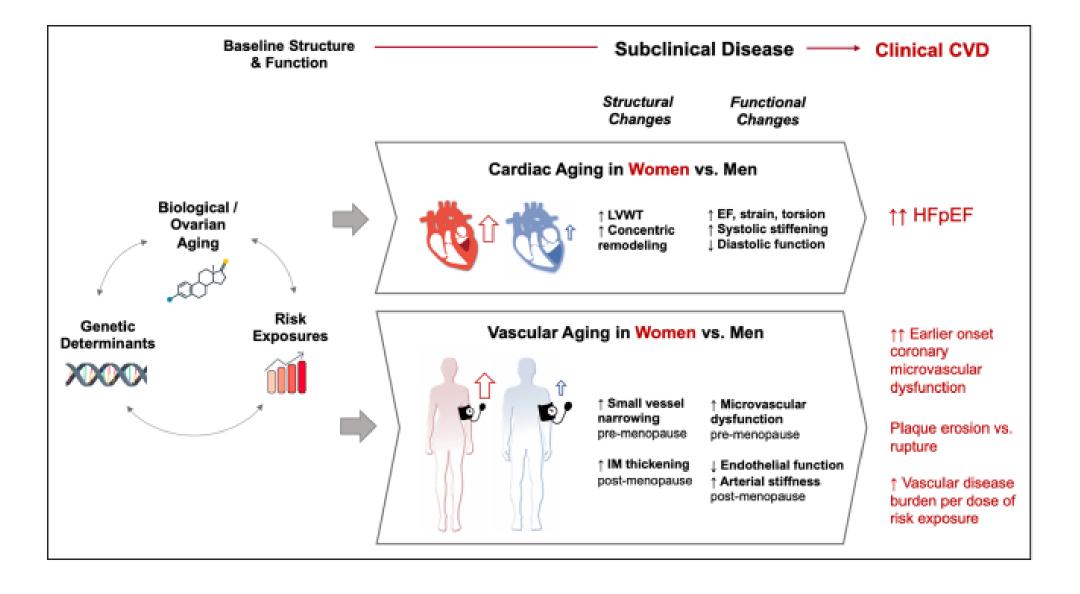




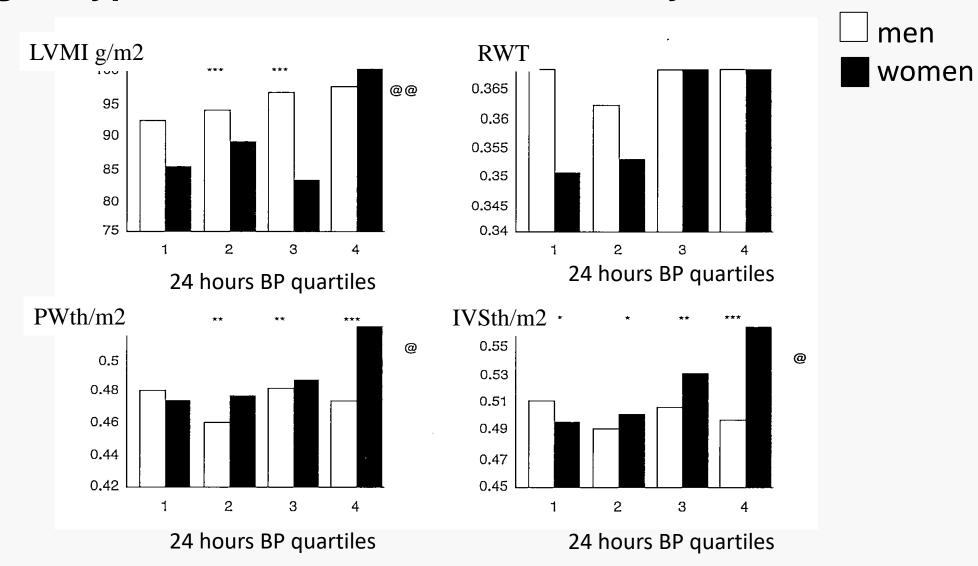
Myocardial Structure in Men and Women

46 M, 11 F undergoing coronary artery bypass graft surgery histological analysis of biopsies from nonischemic LV myocardium

Interstitial (ψ W) and perivascular (M=W) fibrosis Arteries size

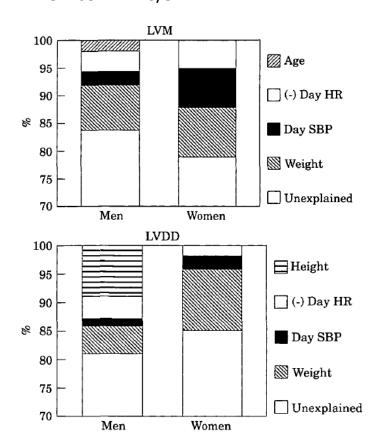

Cardiomyocites size, Reticoline

Capillaries (CD31 positive)


Arterioles area/circumference ratio 47% greater in women (P = 0.012).

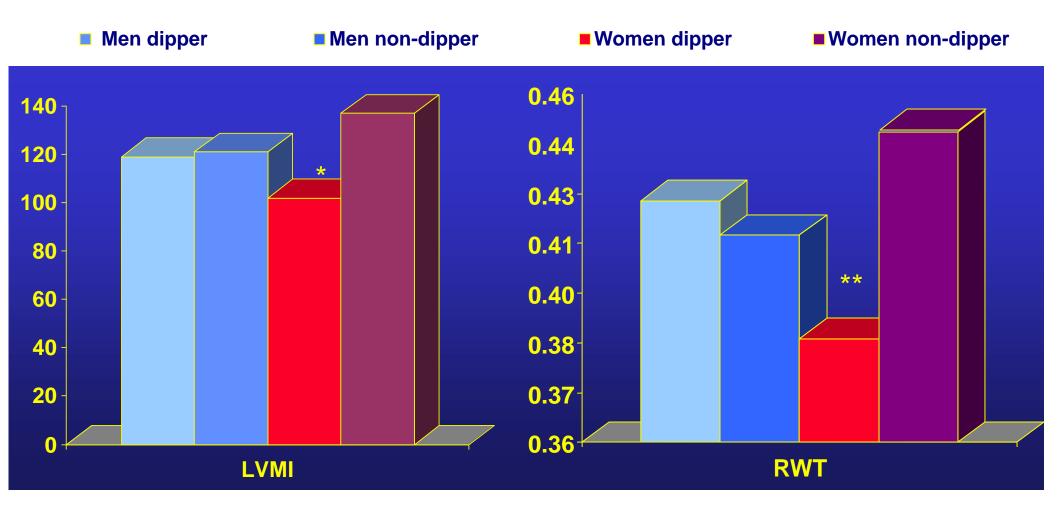
Hypertension. 2011;57:186-192.

Cardiovascular aging phenotypes



Target organ damage and ambulatory blood pressure in stage I hypertension. The HARVEST study.

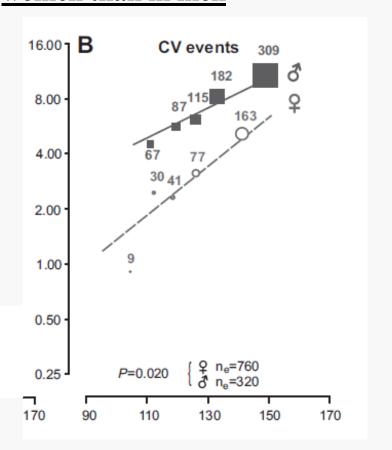
Gender differences in LV size and function in young hypertensives


N=499 subjects 18-45-year-old with stage I hypertension (Harvest study) 377 men and 122 women. Mean age 33 ± 9 years Office BP 146/94

Correlation coefficients of indexes of LV structure and function by gender

Day-time SBP		Day-time DBP	
Men r	Women	Men r	Women
0.19***	0.27**	0.16**	0.16
0.005	0.17	0.01	0.20*
0.14**	0.32***	0.12*	0-22*
0.11*	0.29**	0.13*	0.26**
0.16**	0.10	0.14**	0.02
	Men r 0·19*** 0·005 0·14** 0·11*	Men r 0·19*** 0·27** 0·005 0·17 0·14** 0·32*** 0·11* 0·29**	Men r r men r 0·19*** 0·27** 0·16** 0·005 0·17 0·01 0·14** 0·32*** 0·12* 0·11* 0·29** 0·13*

Gender-specific cardiovascular adaptation due to circadian BP variations


^{**} p< 0.01 * p< 0.05 vs non dipper female

Ambulatory Blood Pressure Monitoring in 9357 Subjects From 11 Populations Highlights Missed Opportunities for Cardiovascular Prevention in Women

9357 subjects (age, 52.8 yrs; 47% women)

Women compared with men were at lower risk (HR for CV events 0.62 p<0.001)

However, the relation of all events with 24-hour BP and with nighttime BP were steeper in women than in men

"...consequently, per a 1-SD (13.4 mmHg) decrease, the proportion of potentially preventable events was higher in women than in men for all cardiovascular events (35.9% vs 24.2%) in relation to 24-hour systolic BP..."

Prevalence of LVH in hypertension:

Electrocardiographic studies

A sex-based analysis in 5 out <u>of</u> 26 studies (12084 patients) showed an average prevalence of LVH of 24% in men and 16% in women (odds ratio 1.38, 95% CI 0.91-2.09, *P*=0.11).

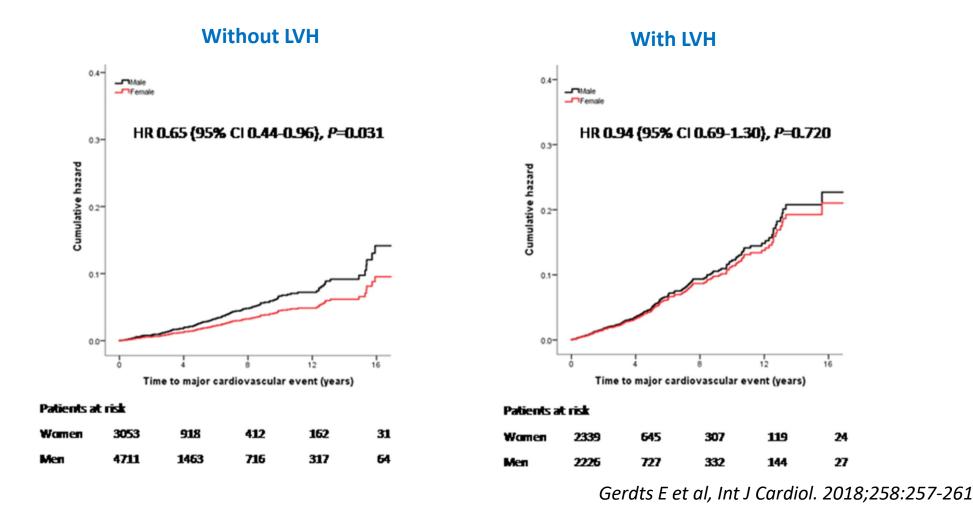
Echocardiographic studies

30 studies, including 37 700 untreated and treated patients (80.3% Caucasian, 52.4% men, 9.6% diabetics, 2.6% with CV disease) LVH prevalence was not different between women and men (range 37.9 -- 46.2 versus 36.0 --43.5%, respectively).

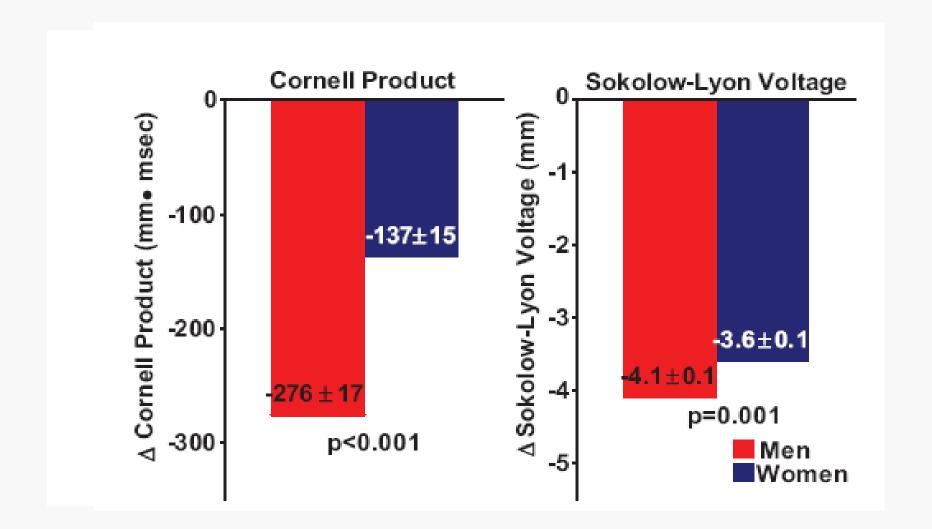
Hazard ratios for CV events, according to sexes The Molisani study

	Women (N=10033)			Men (N=8297)	P for difference
	HR*	98%CI	HR*	98%CI	
Strain	5.23	0.72 to 38.0		1.30 to 21.8	0.95
			5.33		
Sokolov	3.17	0.42 to 24.21	1.61	0.40 to 6.52	0.42
Cornell (V)	1.31	0.66 to 2.59	4.00	1.26 to 12.66	0.12
Ra AVL	2.16	1.06 to 2.55	0.72	0.27 to 1.93	0.068
Cornell (P)	1.40	0.87 to 2.25	2.14	1.24 to 3.70	0.35
Any of them	1.61	1.05 to 2.48	9.97	3.04 to 32.74	0.50

^{*}Adjusted for age, cigarette, hypertension, hypercholesterolemia, diabetes, income, education, occupational class, physical activity, BMI categories, including a term for interaction of the LVH indicator with sex

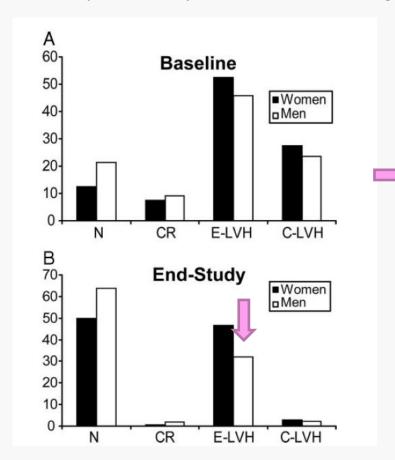

LVH associated CV risk in men and women

		All cause death		Cardiac Death	
		Men	Women	Men	Women
LV mass / height ²	≥ 143 g/m ≥ 102 g/m	2.4	2.9	1	4.4 *
LV mass / height ^{2.7}	\geq 50 g/m $^{2.7}$ \geq 47 g/m $^{2.7}$	1.4	3.0	1	6.0 *
LV mass/ BSA	131 g/m ²100 g/m ²	2.1	3.6	1.4	6.5 *
LV mass/ BSA	117 g/m²104 g/m²	2.0	4.3	1.3	7.5 *


^{*} sex-LVH interaction term

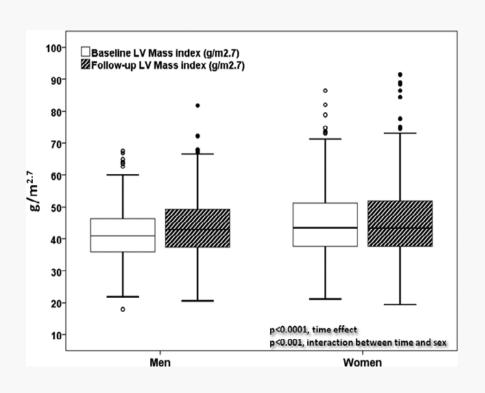
Left ventricular hypertrophy offsets the sex difference in CV risk

12,329 women and men with HTN and free from CV disease (Campania Salute Network) FU: 4.1 years. MACE: combined acute coronary syndromes, stroke, hospitalization for HF and incident AF Mean age 50 y, LVH=37%, obesity 17%


Gender Differences in Regression of Electrocardiographic LVH During Antihypertensive Therapy

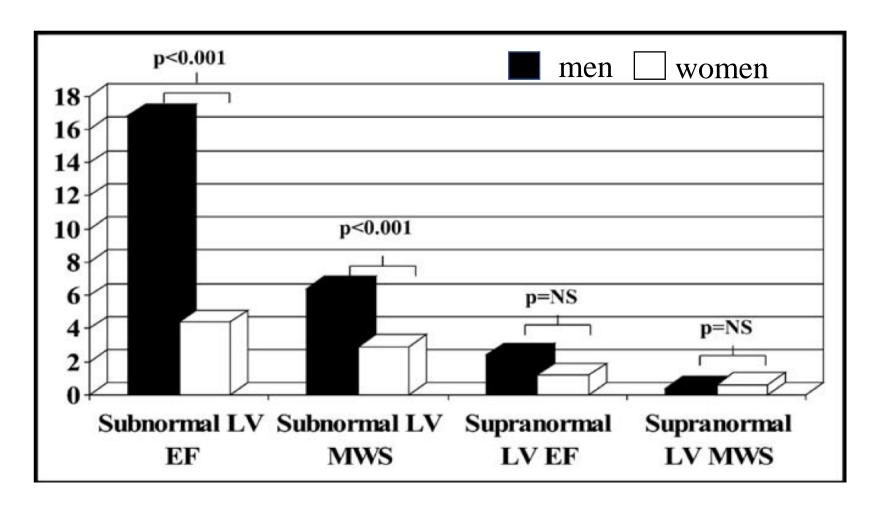
Gender differences in LV mass changes in response to antihypertensive treatment

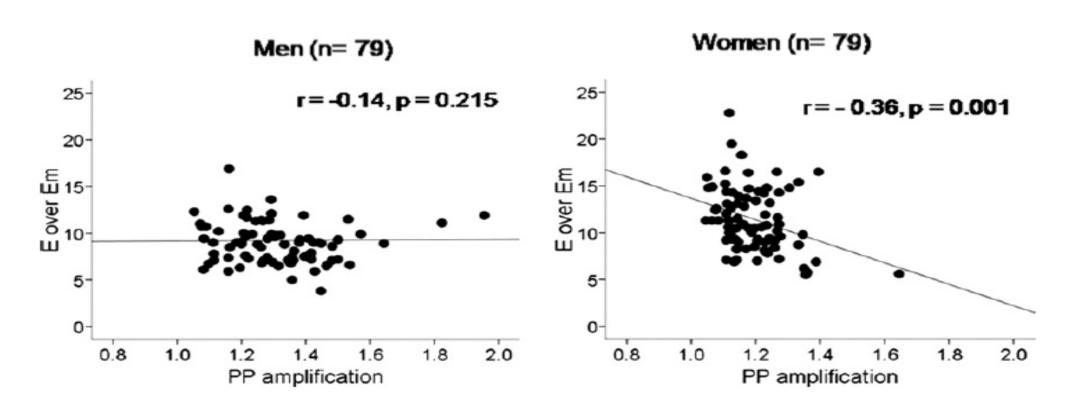
N= 863 hypertensive patients with electrocardiographic LVH


FU: 4.8 years. LVH by EchoCG as LVM ≥ 46.7 g/m^{2.7}(W) and LVM ≥ 49.2 g/m^{2.7} (M)

Predictors and Covariates of End-Study LV Hypertrophy

Variable	OR	95% Cls	Р
Female gender	1.61	1.16 to 2.26	0.005
Age, 1 SD	1.35	1.12 to 1.61	0.001
Baseline LV hypertrophy	7.38	4.46 to 12.23	< 0.0001
End-study pulse pressure, 1 SD	1.26	1.06 to 1.51	0.009
End-study body mass index, 1 SD	1.99	1.65 to 2.70	< 0.001
Lower end-study LV EF, 1 SD	1.39	1.18 to 1.64	< 0.0001
End-study mitral regurgitation	1.49	1.06 to 2.10	0.022
End-study aortic regurgitation	1.77	1.61 to 2.70	0.008

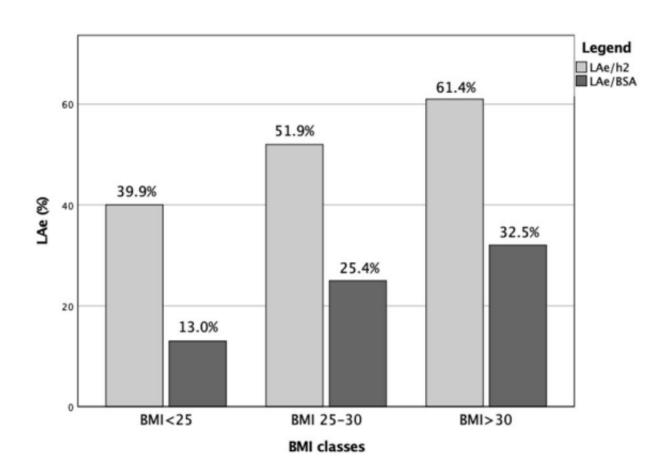

Lack of Reduction of Left Ventricular Mass in Treated Hypertension: The Strong Heart Study


In multivariable logistic regression, lack of decrease in LVMi was associated with

- -initially higher BMI
- -urinary albumin/creatinine ratio
- -older age
- -female gender
- -change in BP over time of follow up

Hypertensive women have higher systolic function Strong Heart Study

Central Hemodynamics and Diastolic Function


Left atrial volume indexed for height² is a new sensitive marker for subclinical cardiac organ damage in female hypertensive patients

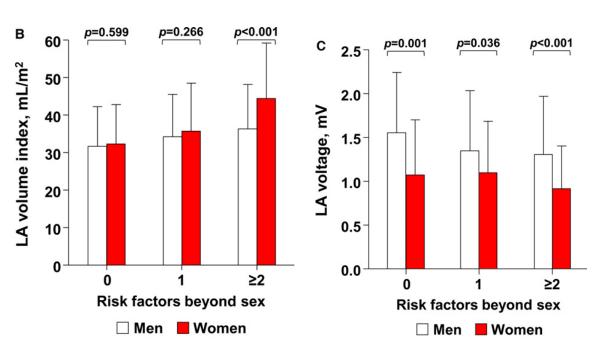
Lorenzo Airale¹ · Anna Paini² · Eugenia Ianniello³ · Costantino Mancusi⁴ · Antonella Moreo⁵ · Gaetano Vaudo⁶ · Eleonora Avenatti¹ · Massimo Salvetti² · Stefano Bacchelli³ · Raffaele Izzo⁴ · Paola Sormani⁵ · Alessio Arrivi⁶ · Maria Lorenza Muiesan² · Daniela Degli Esposti³ · Cristina Giannattasio⁵ · Giacomo Pucci⁶ · Nicola De Luca³ · Alberto Milan¹ · on behalf of the Working Group on Heart and Hypertension of the Italian Society of Hypertension

Variable	Population $(n = 441)$	Male $(n = 229)$	Female $(n = 212)$	p
Left ventricle				
LVMI (g/m ²)	93.8 ± 26.4	99.8 ± 27.9	87.3 ± 23.1	< 0.001
LVH	122 (27.7)	54 (23.6)	68 (32.1)	0.046
-Eccentric	35 (7.9)	13 (5.7)	22 (10.4)	0.068
-Concentric	87 (19.7)	41 (17.9)	46 (21.7)	0.317
RWT	0.42 ± 0.08	0.42 ± 0.09	0.42 ± 0.08	0.449
EF (%)	63.0 ± 7.8	61.7 ± 8.0	64.3 ± 7.4	< 0.001
Diastolic function				
E/A	1.1 ± 0.6	1.0 ± 0.4	1.1 ± 0.8	0.084
Septal Em/Etdi	10.9 ± 4.3	10.4 ± 4.6	11.5 ± 3.9	0.009
Lateral Em/ Etdi (402)	8.4 ± 3.9	7.8 ± 3.1	8.9 ± 4.5	0.003
Mean Em/Etdi (402)	9.3 ± 3.4	8.8 ± 3.2	9.8 ± 3.4	0.002
Left Atrium				
LAV_{h2} (ml/m ²)	19.0 ± 7.5	18.9 ± 7.2	19.2 ± 7.8	0.643
$LAe_{h2} n (\%)$	223 (50.6)	98 (42.8)	125 (59.0)	0.001
LAV _{BSA} (ml/m ²)	28.6 ± 10.8	28.6 ± 10.7	28.5 ± 10.9	0.877
LAe _{BSA} n (%)	103 (23.4)	53 (23.1)	50 (23.6)	0.912

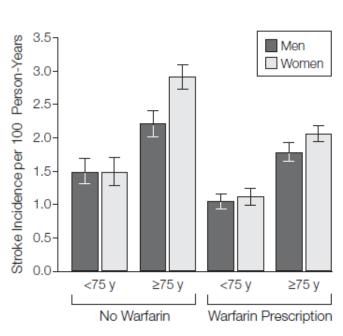
Left atrial volume indexed for height² is a new sensitive marker for subclinical cardiac organ damage in female hypertensive patients

Lorenzo Airale¹ · Anna Paini² · Eugenia lanniello³ · Costantino Mancusi⁴ · Antonella Moreo⁵ · Gaetano Vaudo⁶ · Eleonora Avenatti¹ · Massimo Salvetti² · Stefano Bacchelli³ · Raffaele Izzo⁴ · Paola Sormani⁵ · Alessio Arrivi⁶ · Maria Lorenza Muiesan² · Daniela Degli Esposti³ · Cristina Giannattasio⁵ · Giacomo Pucci⁶ · Nicola De Luca³ · Alberto Milan¹ · on behalf of the Working Group on Heart and Hypertension of the Italian Society of Hypertension

Left atrial volume indexed for height² is a new sensitive marker for subclinical cardiac organ damage in female hypertensive patients

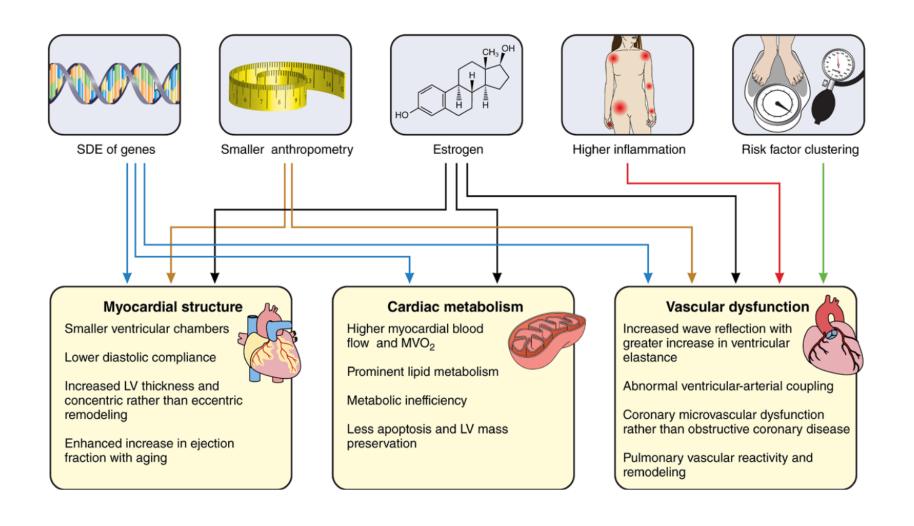

Lorenzo Airale¹ · Anna Paini² · Eugenia Ianniello³ · Costantino Mancusi⁴ · Antonella Moreo⁵ · Gaetano Vaudo⁶ · Eleonora Avenatti¹ · Massimo Salvetti² · Stefano Bacchelli³ · Raffaele Izzo⁴ · Paola Sormani⁵ · Alessio Arrivi⁶ · Maria Lorenza Muiesan² · Daniela Degli Esposti³ · Cristina Giannattasio⁵ · Giacomo Pucci⁶ · Nicola De Luca³ · Alberto Milan¹ · on behalf of the Working Group on Heart and Hypertension of the Italian Society of Hypertension

	LA dilatation	p		
Variable	Norm $(n = 218)$	DilH (n = 120)	DilHB (n = 103)	
Age (years)	54.8 ± 12.8* [‡]	63.8 ± 14.5	67.4 ± 15.5	<0.001
Gender (male)	131 (60.1)*	45 (37.5) [†]	53 (51.5)	< 0.001
Left ventricle				
LVMI (g/m ²)	$85.8 \pm 20.2^{*\ddagger}$	$93.7 \pm 23.0^{\dagger}$	110.0 ± 33.5	< 0.001
LVH	30 (13.8)**	41 (34.2) [†]	51 (49.5)	< 0.001
-Eccentric	6 (2.75)*‡	41 (34.2)	16 (15.5)	< 0.001
-Concentric	24 (11.0)**	28 (23.3)	35 (34.0)	< 0.001
RWT*	$0.41 \pm 0.08^{\ddagger}$	0.42 ± 0.09	0.44 ± 0.09	0.010
EF (%)	63.6 ± 7.18	63.2 ± 7.62	61.4 ± 9.15	0.067
Diastolic function				
E/A	1.05 ± 0.51	1.01 ± 0.57	1.09 ± 0.95	0.662
Septal E/e'	$9.49 \pm 2.89 *$	$11.4 \pm 3.99^{\dagger}$	13.3 ± 5.65	< 0.001
Lateral E/e'	$7.02 \pm 2.11^{*\ddagger}$	9.30 ± 5.27	10.0 ± 3.82	< 0.001
Mean E/e'	$7.93 \pm 2.15*^{\ddagger}$	$9.93 \pm 3.51^{\dagger}$	11.2 ± 3.95	< 0.001


Left Atrial Remodeling and stroke risk in hypertensive women vs men

N= 579 AF patients (216 women, matched with 363 men for CV risk factors and diseases) undergoing AF catheter ablation Mean age 61 years old. , 70.1%

Electroanatomical remodelling



Stroke risk

Yu HT et al, J Am Heart Assoc. 2016;5:e003361

Avgil Tsadok M et al. JAMA. 2012;307:1952-1958

