«Harmonization of the ACC/AHA and ESC/ESH blood pressure/hypertension guidelines: Comparisons/reflections/recommendations »

Whelton/Carey/Mancia/Kreutz/Bundy/Williams JACC, in press

BP classification in US and EU Hypertension (HT) GLs (*US GLs:unified as pre-HT)

BP (mmHg)	$\begin{gathered} \text { US (2003)/EU(2007- } \\ 2013-2018) \end{gathered}$	US (2017)
< 120/80	Optimal	Normal
120-129 / 80-84	Normal*	Elevated
130-139 / 85-89	High normal*	Grade 1 HTT
140-159 / 90-99	Grade 1 HTT	Grade 2 HTT
160-179 / 100-110	Grade 2 HT	
> 180/110	Grade 3 HTT	

BP classification by ACC-AHA GLs Possible consequences

O Elimination of Grade 3 HT : Unnecessary (grading the HT severity useful)

O Downshift of Grade 2 HT (>-140 rather than 160 mmHg): Unnecessary (pis treated anyway)

O High normal BP ($\mathbf{1 3 0 \mathrm { mmHg } \text {) now called Grade } 1 \text { HT: }}$

O Normal BP ($\mathbf{1 2 0 - 1 2 9 \mathrm { mmHg } \text {) now called elevated: }}$ Parradoxical/potential harm(see old pts)

Use of Out-of-ofilice BP

- Wider use recommended by both GLs
- In US GLs preference to Home BP while in EU GLs mention of specific pros/cons and Home \&ABP regarded as complementary

Relationship between 24h and Home BP in PAMIELA

All cause mortality in WCH diagnosed by normality of one or both 24 h and home BP

Cumulative incidence

Progressive Increase in CV Mortality
 (age/gender adjusted data from 0 to 3 BP elevations [ofifice/home/24h mean])

Use of Out-of-ofifice BP

- Wider use recommended by both GLs
- In US GLs preference to Home BP while in EU GLs mention of specific pros/cons and Home \&ABP regarded as complementary
- Target 24h BP lower in US than EU GLs (125/75 vs $130 / 80 \mathrm{mmHg}$)

O Limitations of the evidence only mentioned by EU GLs

Corresponding Values of SBP/DBP for Clinic, HBPM, Daytime, Nighttime, and 24-Hour ABPM Measurements

Clinic	HBPM	Daytime ABPM	Nighttime ABPM	24-Hour ABPM
$120 / 80$	$120 / 80$	$120 / 80$	$100 / 65$	$115 / 75$
$130 / 80$	$130 / 80$	$130 / 80$	$110 / 65$	$125 / 75$
$140 / 90$	$135 / 85$	$135 / 85$	$120 / 70$	$130 / 80$
$160 / 100$	$145 / 90$	$145 / 90$	$140 / 85$	$145 / 90$

ABPM indicates ambulatory blood pressure monitoring; BP, blood pressure; DBP diastolic blood pressure; HBPM, home blood pressure monitoring; and SBP, systolic blood pressure.

Relationship between Office BP and Office-24h BP \triangle in ELSA

EU \&US GLs dififerences on assessment of organ damage

- Agreement on need to quantify CV risk but approach and risk factors listed somewhat different (e.g. HR in EU GLs)

O For EU(but not US) GLs HT-related organ damage most important

- Fundamental for identification of high CV risk
- Useful for drug (s) choice
- Marker of treatment benefit,e.g.LVH/UACR reduction

Cumulative Probability of CV Death according to Presence / Number of Organ Damage

Combined Effects of Albuminuria and eGRR Levels at Baseline on the Risk for Adverse Outcomes in ADVANCE

Summary of office BP thresholds for treatment

Target BP:

```
< 130/80 mmHg
```

\square
$<140 / 80 \mathrm{mmHg}$ \qquad $<130 / 80 \mathrm{mmHg}$

Relative risk of morbidity and mortality outcomes in individuals with high-normal or normal BP: comparison of individuals at low-moderate and high-very high CV risk

Thomopoulos et al., J Hypertens 2017; 35: 2150

High normal BP and antihypertensive drugs

- ESC/ESH GLs: only in pts with history of CV events
- ACC/AHA GLs: recommended if 10yr Framingham risk score is >10\%
O In the elderly this cutoff value is reached just because of the advanced age
- Labelling high normal BP pts as «grade 1 hypertensives» may stimulate most doctors and patients to use drugs

Risk reduction achieved by lowering SBP to <130 or DBP to $<80 \mathrm{mmHg}$ vs higher BP values in RT-based meta-analyses

BP Thresholds for and Goals of Pharmacological Therapy in Patients With Hypertension According to Clinical Conditions

Clinical Condition(s)	BP Threshold, mm Hg	BP Goal, $\mathbf{m m ~ H g}$	
General	$\geq 130 / 80$	$<130 / 80$	
Clinical CVD or 10-year ASCVD risk $\geq 10 \%$	$\geq 140 / 90$	$<130 / 80$	
No clinical CVD and 10-year ASCVD risk <10\%	≥ 130 (SBP)	<130 (SBP)	
Older persons (≥ 65 years of age; noninstitutionalized, ambulatory, community-living adults)			
Specific comorbidities	$\geq 130 / 80$	$<130 / 80$	
Diabetes mellitus	$\geq 130 / 80$	$<130 / 80$	
Chronic kidney disease	$\geq 130 / 80$	$<130 / 80$	
Chronic kidney disease after renal transplantation	$\geq 130 / 80$	$<130 / 80$	
Heart failure	$\geq 130 / 80$	$<130 / 80$	
Stable ischemic heart disease	$\geq 130 / 90$	$<130 / 80$	
Secondary stroke prevention	$\geq 130 / 80$	$<130 / 80$	
Secondary stroke prevention (lacunar)	$<130 / 80$		
Peripheral arterial disease			
ASCVD indicates atherosclerotic cardiovascular disease; BP, blood pressure;			
CVD, cardiovascular disease; and SBP, systolic blood pressure.			

Office BP treatment targets in hypertensive patients General Recommendations

Class / Level

- The first objective of treatment should be to lower BP to $<140 / 90 \mathrm{mmHg}$ in all patients
- Provided that treatment is well tolerated treated BP IA should be targeted to $130 / 80 \mathrm{mmHg}$ or lower in patients aged <65years,unless with CKD

Figure 3. Hazard Ratios and 95\% Cls for Major Cardiovascular Disease Associated With More Intensive Reductions in Systolic Blood Pressure

42 studies, $\mathrm{n}=144220$
Bundy et al, Jama, Cardiol Doi:10.001/Jama

Figure 2. Network of Treatment Comparisons for Cardiovascular Disease and Mortality According to Achieved Systolic Blood Pressure Categories Among 42 Clinical Trials

42 studies/n=144220
Bundy et al JAMA, Cardiology Doi:10.001/jama

SPRINT: SBP over the Trial and Outcomes/(On-T' BP 134.6 vs $121.5 / 75.5$ vs 67.2 mmFlg$)$

Systolic Blood Pressure

Grassi, Quarti-Trevano, Dell’Oro, Vanoli, Perseghin, Mancia, Hypertension 2021;

SPRINT: Forest Plot of Primary Outcome according to Subgroups

Relationships of Numbers of Outcomes Prevented and Numbers of Excess in Treatment Discontinuations* to the Extent of SBP Reductions

* Attributed to treatment adverse events

Thomopoulos, Parati, Zanchetti, J Hypertens 2016; 34: 1451-1463

Hazard ratio according to mean achieved SBP for the adjusted hazard ratios for primary outcome, CV death, myocardial infarction, stroke, hospitalization for CHF, and all-cause death

Stepwise Reduction of Coronary Perfusion Pressure in Hypertensives Patients

 Without and With LVH and Corresponding Flow in Great Cardiac Vein

Priorital antihypertensive drugs in US and EU GLs

- US GLs:preference to chlortalidone/DU GLs:equal status for chlortalidone, indapamide, HCTZ
- US GLs: D/ACEU/ARB/CCB
- EU GLs: D/ACEI/ARB/CCB/BB
- Effective and similar BP reduction
- CV protection against placebo in RCTs
- Similar degree of overall CV protection in several comparison RCTs and meta-analyses

Risk of CV Morbidity and Mortality in RC1s Comparing Drug Treatment vs Placebo

Comparisons of BP-lowering treatment based on BBs with treatments based on all other drug classes considered together

Reduction of stroke risk in CCB compared to BB group (ASCOT) vs the

 metaregressio on the relationship between T-induced fall in BP and stroke

単 ASCOT

Relative risk reduction of various outcomes in BP-lowering trials on BB treatment versus placebo, no treatment or less and no BB-based treatment
 Only hypertension studies (Baseline BP 163.0/94.3mmHg)

Outcome	Trials (n)	Difference SBP/DBP (mmHg)	Events (n/patients)		$\begin{gathered} \mathrm{RR} \\ (95 \% \mathrm{Cl}) \end{gathered}$	$\begin{gathered} \mathrm{RR} \\ (95 \% \mathrm{Cl}) \end{gathered}$	I-squared, P-value
			Active	Control			
Stroke	5	-10.5/-7.0	216/6654	394/12070	0.77 (0.61-0.97)	$\longrightarrow-$	45\%, 0.12
CHD	5	-10.5/-7.0	293/6654	538/12070	0.88 (0.77-1.01)	$\longrightarrow-$	0\%, 0.47
HF	2	-14.8/-8.7	31/ 777	60/ 855	0.57 (0.35-0.91)	\bigcirc	16\%, 0.28
Stroke + CHD	5	-10.5/-7.0	509/6654	932/12070	0.84 (0.74-0.95)	$\bullet-$	33\%, 0.20
Stroke + CHD + HF	4	-10.7/-7.1	446/6282	903/11722	0.78 (0.64-0.96)	$\bigcirc-$	72\%, 0.014
CV Death	5	-10.5/-7.0	258/6654	466/12070	0.84 (0.68-1.04)	\cdots	49\%, 0.097
All-cause Death	5	-10.5/-7.0	457/6654	780/12070	0.95 (0.84-1.06)	$\rightarrow-$	11\%, 0.34
					0.2	$0.5 \quad 1.0$	2.0
						Active better	l better

Core drug treatment strategy for hypertension

Adjusted odds of achieving high* or avoiding low *** adherence to treatment in patients starting

 treatment with antihypertensive monotherapy ($\mathrm{n}=53702$) vs dual $\mathrm{FDC}(\mathrm{n}=9746$) in Lombardy

Factors Involved in Poor Control of BP

Drug-treatment strategies

Hypertension and CAD

Hypertension and CKD

Core drug-treatment strategy for uncomplicated hypertension

> Hypertension and AF

Add oral anticoagulation when indicated according to the $\mathrm{CHA}_{2} \mathrm{DS}_{2}$-VASc score, unless contraindicated. recommended due to a potential marked reduction in heart rate.

European Society
Williams, Mancia et al., J Hypertens 2018;36:1953-2041 and Eur Heart J 2018;39:3021-310

Major drug combinations used in trials in a step-wise or randomived approach vs placebo,monotherapy or other combinations

ACEI + D	ACEI + CCB	ARB + D	CCB + D	BB + D
- CAPPP	- ACCOVIPLISE	- LIIPE	- ELSA	- COPE
- ADVANCE	- NORDII	- SCOPE	- CONVINCE	- SHEP
- PROGRESS	- INYESI	- COLIMI	- VALUE	- STOP-2
- flyyer	- Ascori		- COPE	- CONVINCE
- ACCOIVIPLISEI	- Syst-Eur		- FEVER	- CAPPP
	- Syst-Chind			- STOP-I
ACEI + ARB (or renin inhibitor)ONTARGETALTITIUDE				- LIVE
				- NORDIL
	$\mathrm{ACEI}+\mathrm{BB}$	$\mathrm{CCB}+\mathrm{BB}$	$\mathrm{ARB}+\mathrm{CCB}$	Warrender - INVEST
	- ALLHAT	- ALLHAT	- COPE	- ALLHAT
		- COPE	- COLIVI	- ASCOT

Drug choice in GLs/Restricted or Expanded?

O Patients responsive to one drug class are frequently different from those responsive to another drug class

O Multiple drug options extend number of responders\&facilitate drug replacement (in case of side effects)

O Restricting the number of drug options is against personalized/precision medicine.

Frequency of Office BP re-measurements According to BP values in GLs

ACC/AHA

1 year
3-6 months
-
1 year

- *-80 in ACC/AHA Gls
- *** grade 1 hypertension for ACC/AHA GIs

Persisting Cardiovascular Risk in Treated Hypertensive Patients

Reducing residual risk in treated HTIs/Options

O Is there a risk fraction unmodifiable?
O Associated risk factor control
O Individualized BP targets (higher in some/lower in other pts)

- Out-of-office BP control
- Short/Long term BP variability reduction

O Earlier treatment initiation (when risk still low)

Rate of Clinic BP Normalization at Each Year and Throughout the 4 Years of Treatment in ELSA

INVEST: BP Control and Incidence and risk of Primary Outcome in All Patients and in Diabetic Patients

Summary of the effects of corona-virus disease 2019 and

 the associated shutdown of routine healthcare services for hypertensive patients

Use of ARBs, ACEIs and other antihypertensive drugs in patients with Covid-19 infection (cases*)and corresponding matched controls

	$\begin{gathered} \text { Cases } \\ (\mathrm{N}=6,272) \end{gathered}$	$\begin{aligned} & \text { Controls } \\ & (\mathrm{N}=30,759) \end{aligned}$	Relative difference
Age, years - mean (SD)	68 (13)	68 (13)	MV
Women	2,303 (37\%)	11,357 (37\%)	MV
Drugs:			
Antihypertensive drugs	3,632 (57.9\%)	15,319 (49.8\%)	+14.0\%
ACEIs	1,502 (23.9\%)	6,569 (21.4\%)	+10.5\%
$\triangle \mathrm{RB}$	1.394. (22.2\%)	5,910 (19,2\%)	+13.3\%
CCBs	1,446 (23.1\%)	5,926 (19.3\%)	+13.1\%
$\boldsymbol{\beta}$-blockers	1,826 (29.1\%)	7,123 (23.2\%)	+20.5\%
Diuretics	1,902 (30.4\%)	7,420 (24.1\%)	+20.5\%
Thiazide/Thiazide-like	1,104 (17.6\%)	5,074 (16.5\%)	+6.4\%
Loop	871 (13.9\%)	2,411 (7.8\%)	+43.6\%
VIRA	239 (3.8\%)	738 (2.4\%)	+3\% 3.1%
Monotherapy	1,067 (17.1\%)	4,903 (15.9\%)	+6.4\%
Combination therapy	2,565 (40.9\%)	10.416 (33.9\%)	+17.3\%

Adjusted odds ratios of Covid-19 infection associated with use of BP-lowering drugs

 in monotherapy or combination therapy (n=6272 with Covid-19 vs 30759 controls)

Clinical features of patients with Covid-19 infection (cases/n=6272)) and corresponding matched controls* ($\mathrm{n}=30759$)				
Comorbidities and associated procedures	Relative difference (Cases vs Controls)	Chronic Comorb. Score	Relative difference (Cases vs Controls)	$\begin{array}{lc} \text { c } & \text { Adjusted } \\ \text { s) } & \text { OR } \end{array}$
Cardiovascular disease	+28.0\%	0	-25.8\%	1.00 (Reference)
Coronary artery disease	e $+34.6 \%$			
Percutaneous coronary intervention	+31.3\%	1	-7.2\% 1	1.19 (1.09 to 1.31)
Heart failure	+52.1\%	2	+11.4\% 1	1.38 (1.23 to 1.54)
COPD	+53.1\%	3	4-25.9\%	1,55 (1,351 io 1,7\%)
Asthma	+60.4\%			
Cidney clisease	+26.3\%	4	138.2%	$1.57(1,341$ 10 $1,3.3)$
Chronic kidney disease	+55.8\%			
Dialysis	+77.6\%			
Cancer	$+13.3 \%$			

[^0]
Forest plot of the association between ACEI or ARB treatment and all-cause mortality/severe disease in 87951 patients hospitalized with COVID-19 infection

Adjusted odds ratios of Covid-19 infection associated with use of BP-lowering drugs

 in monotherapy or combination therapy (n=6272 with Covid-19 vs 30759 controls)

In SPRINT pts were at high CV risk and initial BP was in the high normal range but virtually all of them were treated at baseline

Sensitivity to detect treatment-induced changes, reproducibility and operator independence, time to changes, and prognostic value of changes provided by markers of HMOD

Marker of HMOD	Sensitivity to changes	Reproducibility and operator independence	Time to changes	Prognostic value of the change
LVH by ECG	Low	High	Moderate $(>6$ months)	Yes
LVH by echocardiogram	Moderate	Moderate	Moderate $(>6$ months)	Yes
LVH by CMR	High	High	Moderate $(>6$ months)	No data
eGFR	Moderate	High	Very slow (years)	Yes
Urinary albumin excretion	High	Moderate	Low	Neeks to months)

European Society

Office BP treatment target ranges

Age group	Office SBP treatment target ranges ($\mathbf{m m H g}$)					$\begin{aligned} & \text { Diastolic } \\ & \text { treatment } \\ & \text { target } \\ & \text { range } \\ & (\mathrm{mmHg}) \\ & \hline \end{aligned}$
	Hypertensio n	+ Diabetes	+ CKD	+ CAD	$\stackrel{+}{+}$	
18-65 years	Target to 130 or lower if tolerated Not < 120	Target to 130 or lower if tolerated Not < 120	$\begin{aligned} & \text { Target to } \\ & <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ & \text { if tolerated } \end{aligned}$	Target to 130 or lower if tolerated Not < 120	Target to 130 or lower if tolerated Not < 120	<80 to 70
65-79 years	$\begin{gathered} \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \end{gathered}$	$\begin{gathered} \hline \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \end{gathered}$	<80 to 70
≥ 80 years	$\begin{gathered} \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Target to } \\ <\mathbf{1 4 0} \text { to } \mathbf{1 3 0} \\ \text { if tolerated } \\ \hline \end{gathered}$	<80 to 70
Diastolic treatment target range $(\mathrm{mmHg}$)	<80 to 70					

How to explain the threshold and target BP gap in EU

 GLs?O In US GLs Threshold/Target BP for drug treatment almost entirely coincide: >-130/80 VS $<130 / 80 \mathrm{mmHg}$

O In EU GLs Threshold higher in most cases than Target B P $\gg-140 / 90$ ys $<140 / 80$ or $<130 / 80 \mathrm{mmflg}$

How to explain the threshold and target BP gap in EU GLs?

O In US GLs Threshold/Target BP for drug treatment almost entirely coincide: >- 130/80 VS $<130 / 80 \mathrm{mmHg}$

O In EU GLs Threshold higher in most cases than Target BP: >- 140/90 vs $<140 / 80$ or $<130 / 80 \mathrm{mmHg}$

O In EU CiLs threstiold BP yalues strictly bised on recrutment BP criterisin untrented pts

- In US GLs probable use of baseline BP data - $140 / 90 \mathrm{mmflg}$ even if pts were already under treatment

Preferred treatment strategies in US and EU GLs

- Combination treatment in most pts (both)
- Initial dual combination in most pts (both)

O Preferred triple therapy and additional drugs in RH similar

- In EU GLs more emphasis on -SPC
-RAS blocker with CCB or D (uncomplicated HT)
-Other combinations mentioned for specific conditions

Differences between ACC/AHA guidelines

- Classification of BP values
- Use of out-of-office BP
- Assessment of asymptomatic organ damage

O BP threshold for drug treatment
O BP target for drug treatment

- Major drug classes (first choice)
- Preferred treatment strategies
- Follow-up

Distribution of Combined Class / Level of Evidence in ESH/ESC Guidelines

Towsend \&Mancia , HYPERTENSION,Bakris \&Sorrentino (eds),Elsevier, 2018:459-468

American
Heart
Association.
life is why

BBs are the Preferred Drugs in a large number of conditions

O Previous MII

- Angina pectoris
- Supraventricular tachyarrhythmias
- Tachycardia
- Permanent AF
- Recurrent AF
- Ventricular arrhythmias

O Glaucoma

- Pregnancy
- Congestive heart failure

O Acute coronary syndrome

- Thyrotoxicosis

O Hyperkinetic syndrome

- Migraine
- Essential tremor
- Perioperative hypertension
- Excessive pressor response to exercise (and stress)
O Orthostatic hypertension
- Aortic aneurysm
- After CABG

Risk of CV Morbidity and Mortality in RCTs
Comparing One Antihypertensive Drugs Class vs Others

- Sign "s-" means lower SBP in antihypertensive drug compared with others

Office BP Target(mmH Hg) for treatment in GLs

- European GLs*:
- < 140/80 (<130/80 only if treatment well tolerated)
- Older pts/CKD <140/80 \& never <130/70
- ISH GLs*: <130/80 but <140/90 acceptable

O ACC/AHA GLs: $<130 / 80$ in virtually all pts
O European GLs: Never <120/70(J curve)

* target individualized in frail pts

Standardized effects of 10 mmHg SBP fall by beta-blockers vs other antihypertensive drugs (123 trials/n=613815)

OUTCOME

CV events

Coronary disease
Heart Failure
Stroke
All Cause Mortality

* Statistically significant

RISK (\%)

$$
\begin{gathered}
+17 \% \\
+3 \text { (ns) } \\
+4 \text { (ns) } \\
+24^{*} \\
+6 \%
\end{gathered}
$$

Blood Pressure (BP) Thresholds and Recommendations for Treatment and Follow-Up (continued on next slide)

BP claassification/2017 ACC-AHA GLs modifications

O BP >- 140/90mmHg (grade 2-3 HT): grade 2 HT (grade 3 eliminated)

UNNECESSARY

○ BP 120-129/80-84mmHg (normal): now «elevated» PARADOXICAL/POTENTIALLY HARMINL

O BP 130-139/85-89mmHg(high normal): now «grade 1 HT》

NEGATIVE BUT ALSO POSITIVE ASPECIS

Major changes in the 2017 ACC/AHLA GLs

- Grade 2 HT from 140mmHg SBP above(Grade 3 HT eliminated)
- High normal BP ($\mathbf{1 3 0}-139 \mathrm{mmHg}$ SBP) becomes Grade 1 HT
- Normal BP ($\mathbf{1 2 0 - 1 2 9 m m H g ~ S B P) ~ b e c o m e s ~ B P ~ e l e v a t i o n ~}$

BP threshold for drug treatment in 2017 ACC/AHLA GLs

- Threshold >- 130/80mmHg in virtually all hypertensive patients, including old and very old (octogenarians) individuals

O Exception:No treatment if BP is high normal (130$139 / 85 / 89 \mathrm{mmHg}$) and 10 year CV risk <10 \%

- Just because of age old patients with a high normal BP usually have a 10 year CV risk $>10 \%$

Distribution of class / level of evidence *

 in 2018 ESC/ESH Guidelines recommendations ($\mathrm{n}=135$)

Out-of-ofifice BP in the 2017 ACC/AHA GLs

- Out-of office BP measurements are recommended for
-Diagnosis of hypertension
-Titration of BP-lowering interventions
O Some preference to Home vs Ambulatory BP

BP measurements

« In general, ABPM and HBPM should be regarded as complementary rather than absolute alternatives»

BP threshold for drug treatment in 2017 ACC/AHLA GLs

O Threshold >- 130/80mmHg in all hypertensive patients, including old and very old (octogenarians) patients

- In patients with high normal BP and 10 year CV risk $<10 \%$: threshold >-140/90mmHg

CV and All Cause Mortality in WCH Diagnosed by Normality of One (Partial WCH) or Both 24h and Home BP (True WCH)

Mancia et al., Hypertension 2013, 62, 168

Home(H)/Ambulatory(A) BP. Major limitations

- Advantage of HBP/ABP-guided T never tested
- Optimal HBP/ABP targets never established
- Evidence on long-term prognostic superiority of ABP/HBP over office BP limited by:
-Single set of ABP/HBP data
-Adjustment approach
-No verification of office BP quality
- How much addition of HBP/ABP to office BP improves outcome prediction is unknown

BP Thresholds for and Goals of Pharmacological Therapy in Patients With Hypertension According to Clinical Conditions

Clinical Condition(s)	BP Threshold, mm HgBP Goal, $\mathbf{m m ~ H g}$	
General	$\geq 130 / 80$	$<130 / 80$
Clinical CVD or 10-year ASCVD risk $\geq 10 \%$	$\geq 140 / 90$	$<130 / 80$
No clinical CVD and 10-year ASCVD risk <10\%	≥ 130 (SBP)	<130 (SBP)
Older persons (≥ 65 years of age; noninstitutionalized, ambulatory, community-living adults)		
Specific comorbidities	$\geq 130 / 80$	$<130 / 80$
Diabetes mellitus	$\geq 130 / 80$	$<130 / 80$
Chronic kidney disease	$\geq 130 / 80$	$<130 / 80$
Chronic kidney disease after renal transplantation	$\geq 130 / 80$	$<130 / 80$
Heart failure	$\geq 130 / 80$	$<130 / 80$
Stable ischemic heart disease	$\geq 140 / 90$	$<130 / 80$
Secondary stroke prevention	$\geq 130 / 80$	$<130 / 80$
Secondary stroke prevention (lacunar)	$\geq 130 / 80$	$<130 / 80$
Peripheral arterial disease		

ASCVD indicates atherosclerotic cardiovascular disease; BP, blood pressure;
CVD, cardiovascular disease; and SBP, systolic blood pressure.

Drug treatment at high normal or grade 1 HTT

- ESC/ESH GLs: Only in the setting of secondary prevention
- ACC/AHA GLs: When CV risk is greater than $\mathbf{1 0 \%}$ (Framingham)

All cause mortality in WCH diagnosed by normality of both 24h home BP or of only one of these two BPs

Cumulative incidence

Mancia et al., Hypertension 2013,62,168

[^0]: * Cases diagnosed from February 21 to March 112020 Mancia, Rea, Ludergnani, Apolone and Corrao, NEJM 2020, May 1st

