SULLE SPONBE BELTICINS

Modelli organizzativi nella Sanità di oggi

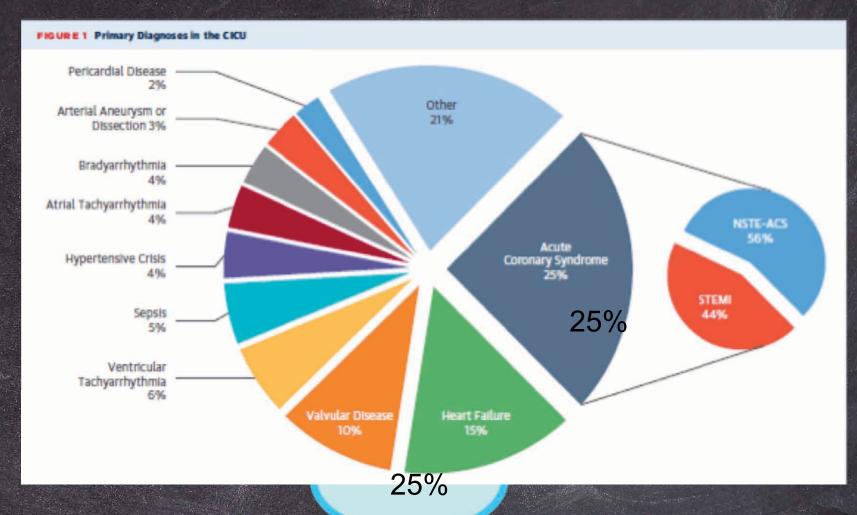
CARDIO

Focus

STRESA, 8 e 9 Giugno 2017

Regina Palace Hotel

PROBLEMI NEFROLOGICI IN UTIC


Dott. ssa Lidia ROSSI

Responsabile UTIC - Novara

Acute Noncardiovascular Illness in the Cardiac Intensive Care Unit

Eric M. Holland, MD, Ab Travis J. Moss, MD, MScAb

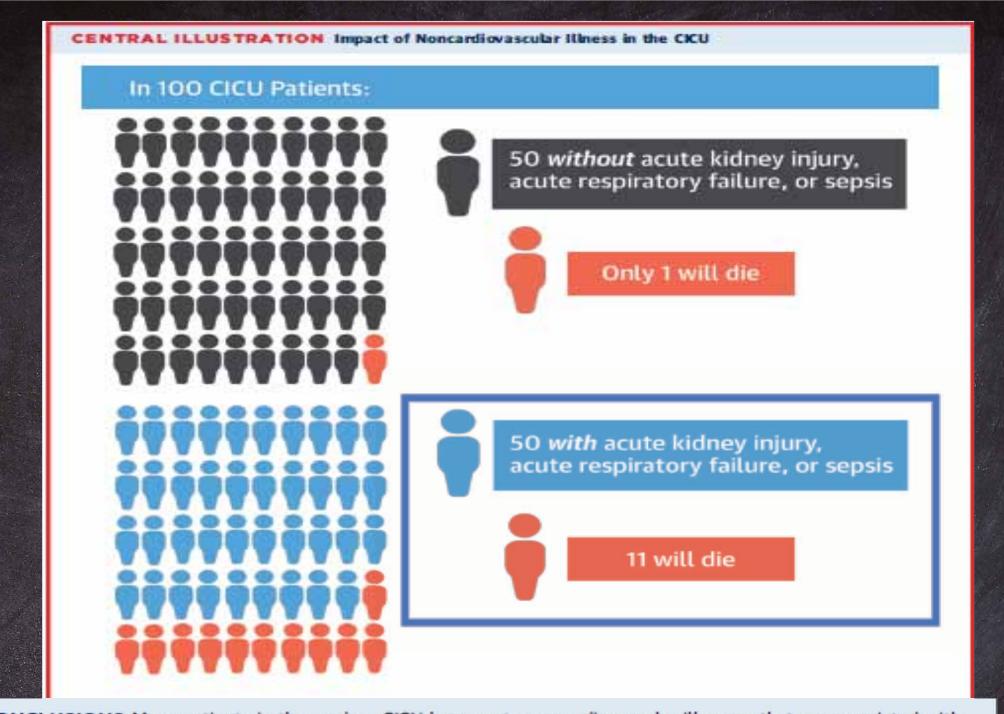

Acute Noncardiovascular Illness in the Cardiac Intensive Care Unit

TABLE 3 Determinants of CICU LOS and 30-Day Hospital Readmission

Predictors	Coefficient	SE	p Value			
CICULOS			are unit (CICU), non	cardiovascular illn	esses have	July 1
Age	-0.2209	0.0453	<0.0001			
OASIS	-0.0700	0.0897	30-day hospital readmission			
Acute kidney injury	5.5497	1.4793	Age	-0.0100	0.0061	0.1031
Hemorrhage	-2.9431	5.5823	OASIS	0.0022	0.0131	0.8688
Acute respiratory failure	6.6954	1.6693	Acute kidney injury	0.1154	0.2044	0.5722
Sepsis	2.6333	1.952	Hemorrhage	0.0562	0.8394	0.9466
Cardiogenic shock	-0.0572	2.3011	Acute respiratory failure	0.0957	0.2316	0.6797
Cardiac arrest	-4.3523	3,3593	Sepsis	0.1730	0.2654	0.5145
New subclinical AF	6.28817	2,5656	Diabetes mellitus	0.3444	0.1853	0.0631
New clinical AF	3,5183	5,151	Heart failure	-0.0734	0.2062	0.7219
Previous AF	2,4192	1,4544	Chronic kidney disease	0.5502	0.2055	0.0074
Post-operative	3.6355	1.7033	Previous stroke	0.4064	0.2156	0.0594
hospital. Of the 920			CICU LOS	0.0129	0.0114	0.2571
kidney injury, and a and new-onset sub-	cute respiratory fail	ure were associat	Unscheduled procedure	-0.3606 0.4404	0.2375	0.1290 0.2436

CONCLUSIONS Many patients in the modern CICU have acute noncardiovascular illnesses that are associated with mortality and increased LOS. (J Am Coll Cardiol 2017;69:1999-2007) © 2017 by the American College of Cardiology Foundation.

CONCLUSIONS Many patients in the modern CICU have acute noncardiovascular illnesses that are associated with mortality and increased LOS. (J Am Coll Cardiol 2017;69:1999-2007) © 2017 by the American College of Cardiology Foundation.

Hospital-acquired renal insufficiency: a prospective study. Hou et Al: . 1983 Feb;74(2):243-8

Mortalità elevata <u>anche</u> in assenza di severa disfunzione d'organo

F G Brivet et al:

Acute renal failure in intensive care units--causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure.

CONCLUSIONS

The hospital mortality rate of patients with severe acute renal failure in patients requiring intensive care remains high.

ARF is associated with a mortality that is not well explained only by organ function loss per se but is related to clinical circumstances that lead to renal dysfunction

Table 2. Clinical patient characteristics (all values mean ± SEM)

	ARF (N = 254)	ESRD $(N = 57)$
Age years	59 ± 1	58 ± 2
APACHE III ^a	64 ± 2	64 ± 3
APS3 ^a	53 ± 2	58 ± 4
Temperature °C	36.3 ± 0.1	36.2 ± 0.1
Systolic blood pressure mm Hga	113 ± 3	130
Diastolic blood pressure mm Hga	54 ± 2	58
Heart rate min-la	112 ± 2	106 ICU
Respirations min ^{-la}	21 ± 1	21 da
White blood cells $\times 10^9/L^a$	14.5 ± 0.6	10.7 ICU

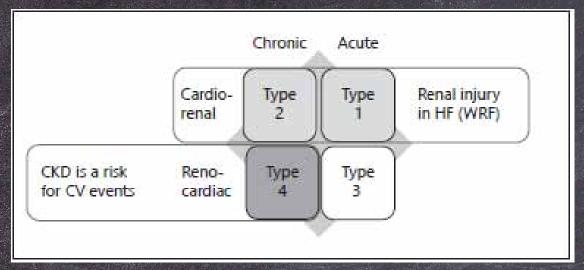
LA COMPARSA DI AKI IN PAZIENTI TRATTATI PER PATOLOGIE ACUTE ASSUME SIGNIFICATO DI INDICATORE PROGNOSTICO NEGATIVO

	ARF	ESRD	No ARF
	(N - 254)	(N - 57)	(N - 1219)
ICU length of stay			
days*	11 ± 1	5 ± 1	4 ± 0.1
ICU length of stay			
(predicted) days*	6 ± 0.1	6 ± 0.3	5 ± 0.1
ICU (predicted)*	0.177 ± 0.013	0.179 ± 0.013	0.063 ± 0.004 ⁶
ICU mortality			
(observed) ^c	59/254 (23%)°	6/57 (11%)	55/1219 (5%)
Standardized ICU			
mortality	1.31	0.59	0.71
Hospital death			
(predicted) ^a	0.276 ± 0.016	0.272 ± 0.035°	$0.115 \pm 0.005^{\circ}$
Hospital mortality			
(observed) ^c	86/254 (34%)°	8/57 (14%)	109/1219 (9%)
Standardized hospital			
mortality	1.21	0.52	0.75

^aBy ANOVA single variant

No ARF

(N = 1219)


 $^{{}^}bP = NS$ predicted vs. observed mortality (χ^2 or Fisher's Exact Test where appropriate)

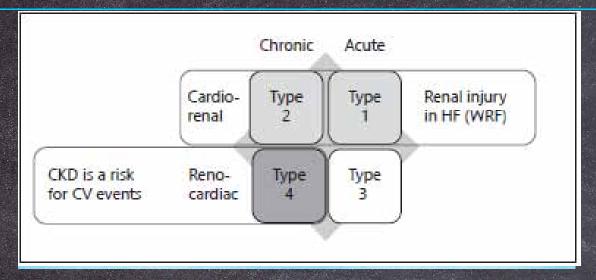
 $^{^{\}circ}P < 0.001$ ARF vs. no renal failure by χ^2

Kidney-Heart Interactions in Acute Kidney Injury

- AKI is a common complication in critically ill patients treated in intensive care units
- RRT requiring AKI occours in approximately 5-10% of patients in ICU and their mortality rate is unacceptably high (50-60%)

THIS SUGGESTS THAT THERE ARE UNRECOGNIZED ORGAN INTERACTIONS FOLLOWING AKI THAT COULD WORSEN THEIR OUTCOMES

STATE-OF-THE-ART PAPER


Cardiorenal Syndrome

Claudio Ronco, MD,* Mikko Haapio, MD,† Andrew A. House, MSc, MD,‡ Nagesh Anavekar, MD,§ Rinaldo Bellomo, MD¶

Vicenza, Italy; Helsinki, Finland; London, Ontario, Canada; and Melbourne, Australia

whereby an acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ

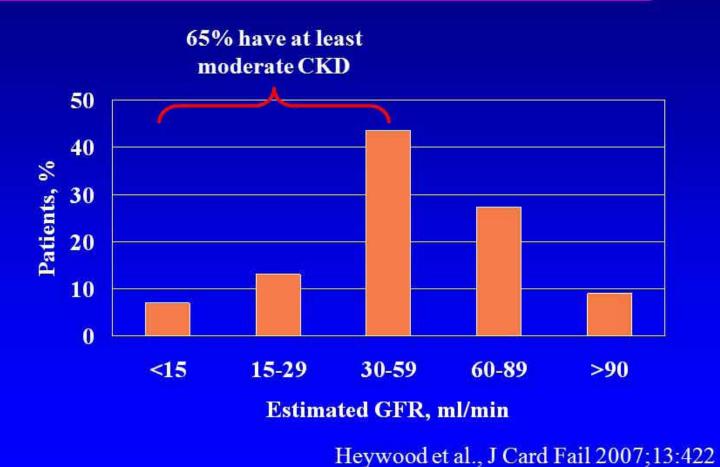
The CRS include a variety of acute and chronic conditions where the primary failing organ may be either the heart or the kidney

JACC 2008; 52: 1527-32

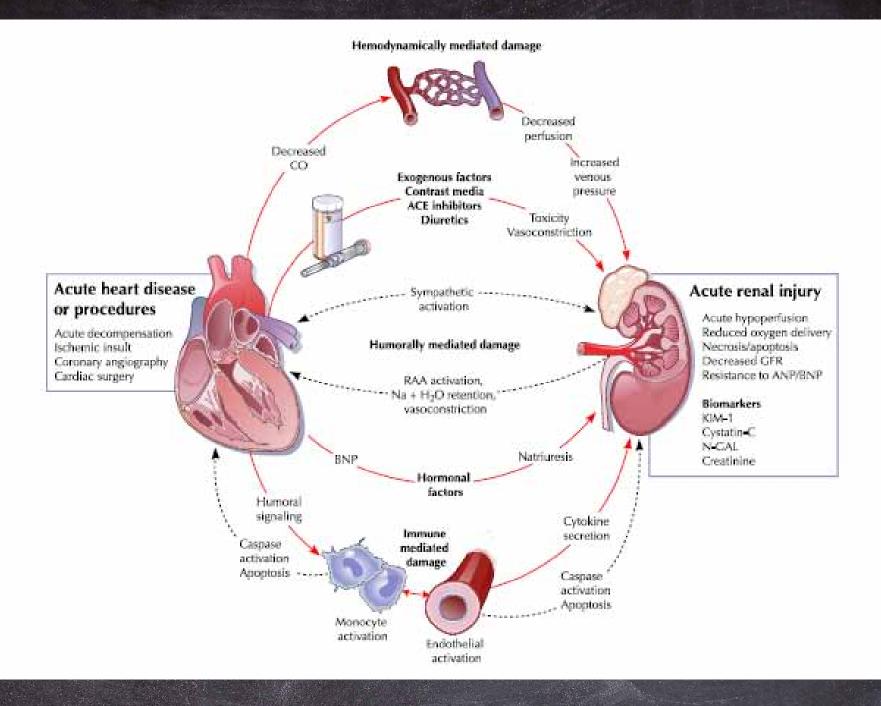
CLASSIFICATION OF CARDIORENAL SYNDROMES

Class	Туре	Description	Clinical Scenarios (Examples)
1	Acute CRS	Abrupt worsening of cardiac function leading to AKI	- AHF - Cardiac surgery - ACS - CIN after coronary angiogram
2	Chronic CRS	Chronic abnormalities of cardiac function leading to CKD	- IHD/hypertension - CHD - CHF
3	Acute renocardiac syndrome	Abrupt worsening of renal function leading to acute cardiac dysfunction	Acute pulmonary edema in AKI Arrhythmia CIN with adverse cardiac outcomes
4	Chronic renocardiac syndrome	CKD leading to chronic cardiac dysfunction	Cardiac hypertrophy in CKD Adverse cardiovascular events in CKD ADPKD with cardiac manifestations
5	Secondary CRS	Systemic disorders causing cardiac and renal dysfunction	- Sepsis - SLE - DM

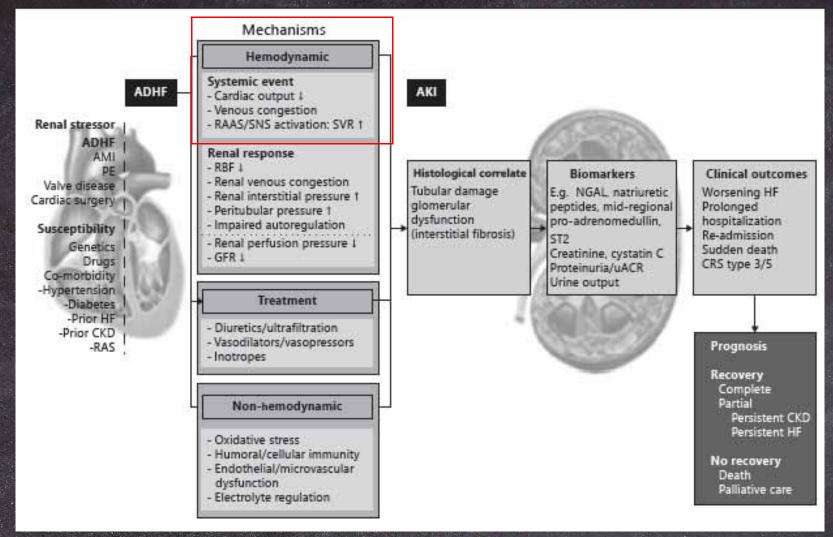
- •Riflette interazione bidirezionale tra cuore e rene
- Il meccanismo fisiopatologico sottostante
- Il contesto temporale del danno renale



Nationwide survey on acute heart failure in cardiology ward services in Italy


eGFR (ml/m²/1.73m)	TOTAL N=2727	WORSENING N=1524	DE NOVO N=1203
<30	12.4	15.6	8.3
30-60	46.7	52.3	46.7
>60	40.9	32.1	52.0

Tavazzi L. European Heart Journal 2006 27(10):1207-1215


Majority of Patients with AHF have Renal Dysfunction (N = 118,465)

SINDROME CARDIORENALE TIPO 1

Patogenesi crs tipo 1

McCullough PA, Kellum JA, Mehta RL, Murray PT, Ronco C (eds): ADQI Consensus on AKI Biomarkers and Cardiorenal Syndromes. Contrib Nephrol. Basel, Karger, 2013, vol 182, pp 99–116

Hemodynamic

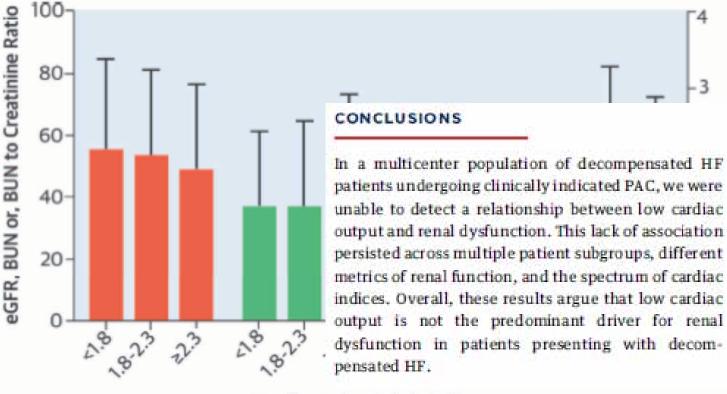
Systemic event

- Cardiac output 1
- Venous congestion
- RAAS/SNS activation: SVR †

Cardiorenal Interactions

Insights From the ESCAPE Trial

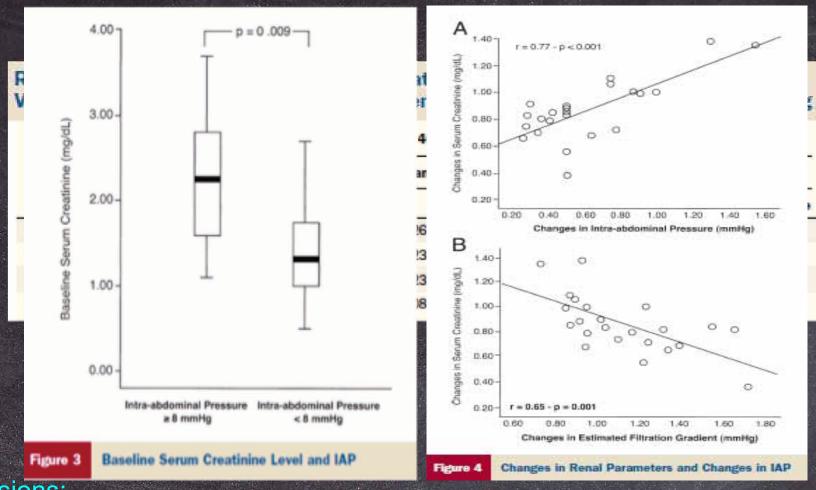
Conclusions


This analysis of the ESCAPE trial suggests that in patients hospitalized with advanced decompensated heart failure, baseline renal insufficiency impacts prognosis more than worsening renal function during hospitalization. The lack of correlation between measured hemodynamic parameters and renal function suggests that poor forward flow may contribute to but is not the primary cause of renal dysfunction in patients with advanced heart failure. Accordingly, hemodynamic optimization with PAC did not reduce the incidence of worsening renal function or improve renal function or outcomes, even among patients with baseline renal insufficiency, in this study. Advanced heart failure

Nohria A Jacc 2008
Bader F Curr Opin Cardiol

Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure

Jennifer S. Hanberg, BA, A. Krishna Sury, MD, F. Perry Wilson, MD, MSCE, A. Meredith A. Brisco, MD, MSCE, d. Tariq Ahmad, MD, MPH, b. Jozine M. ter Maaten, MD, J. Samuel Broughton, BS, Mahlet Assefa, BS, W.H. Wilson Tang, MD, Chirag R. Parikh, MD, PBD, A. Deffrey M. Testani, MD, MTR A.


Cardiac Index (L/min/m²)

CONCLUSIONS These results reinforce evidence that reduced CI is not the primary driver for renal dysfunction in patients hospitalized for HF, irrespective of the degree of CI impairment or patient subgroup analyzed.

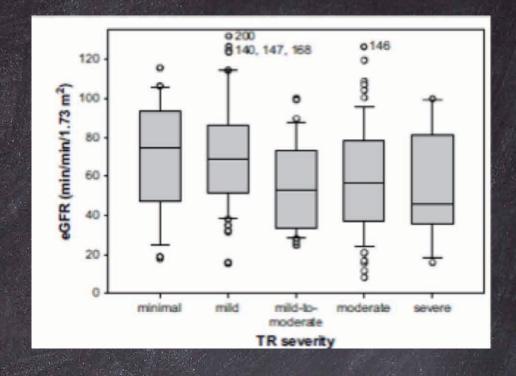
(J Am Coll Cardiol 2016;67:2199-208) © 2016 by the American College of Cardiology Foundation.

Elevated Intra-Abdominal Pressure in Acute Decompensated Heart Failure

A Potential Contributor to Worsening Renal Function?

Conclusions:

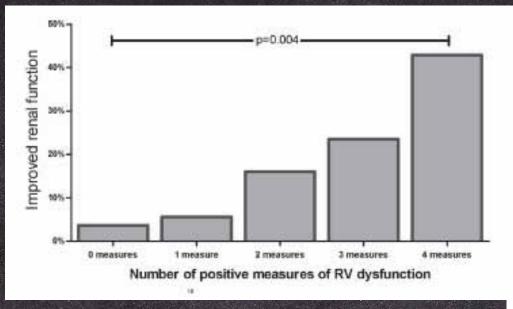
elevated IAP is prevalent (60%)in pts with ADHF and is associated with impaired renal function... changes in IAP were better correlated with changes in renal function than any hemodynamic variable.

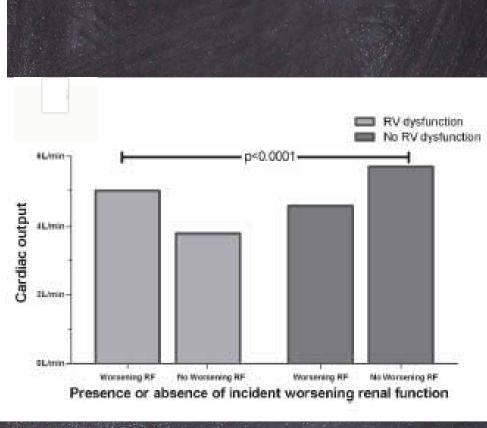

Mullens JACC 2008; 51: 300-306

Tricuspid Regurgitation Contributes to Renal Dysfunction in Patients With Heart Failure

MICHAT. MAEDER, MD, DIANE P. HOLST, RN, AND DAVID M. KAYE, MD, PhD

Table 3. Univariate and Multivariate Predictors of Estimated Glomerular Filtration Rate

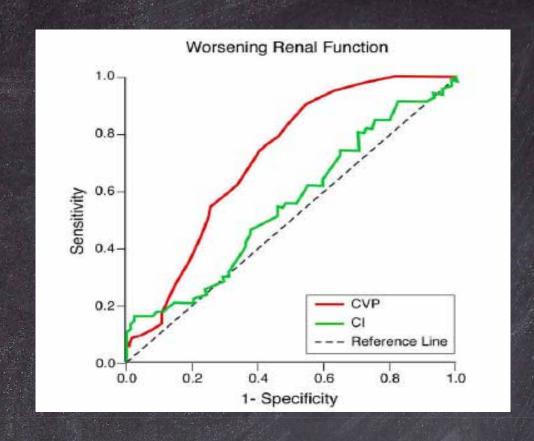

	Univariate		Multivariate		
	Standardized β	P	Standardized β	P	
Age	-0.36	<.001	-0.31	<.001	
ACEI/ARB	0.20	.006	0.24	.001	
Loop diuretic	-0.14	.058	-0.19	.008	
RV diameter	-0.16	.07			
MR severity	-0.19	.009			
TR severity	-0.21	.004	-0.19	.003	
RVSP	-0.14	.057			



Although a causal relationship can not be proven, these data suggest that significant TR and high CVP might contribute to renal dysfunction in HF patients, possibly by elevating renal venous pressure and thereby reducing renal perfusion pressure. Taken together, these observations suggest that strategies which may reduce the severity of TR might be beneficial in HF patients with significant renal impairment.

J Card Fail 2008; 14: 824-830

Effect of Right Ventricular Function and Venous Congestion on Cardio-Renal Interactions during the Treatment of Decompensated Heart Failure

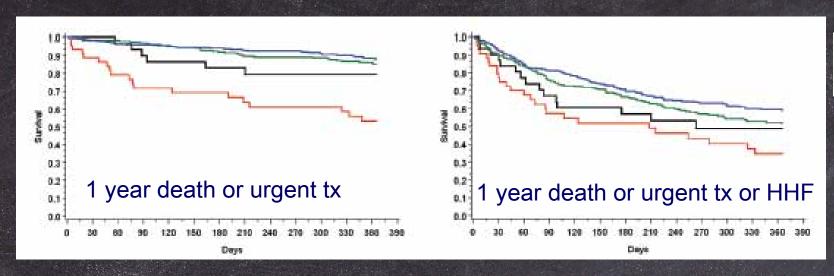


..the dominant effect of venous congestion in cardiorenal interactions that overwhelms the influence of diminished CO

Testani JM am J Cardiol 2010; 105: 511-516

Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure

Baseline CVP but not baseline CI predicted worsening renal function

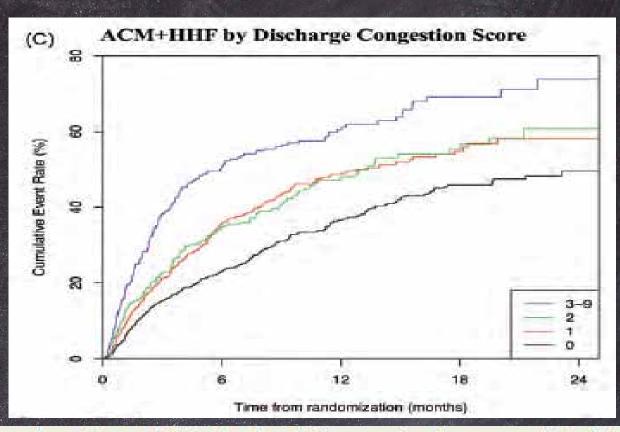


therapy had limited contribution to WRF. These observations provide important clinical confirmation of experimental data that preservation of cardiac output without relieving venous congestion may not necessarily avert the development of WRF. While many of these findings may seem intuitive to the experienced clinician, the concept of "congestive kidney failure" is of high clinical value with the contemporary epidemic proportions of ADHF where cardiac insufficiency (rather than venous congestion) is often considered the core lesion.

Mullens W. JACC 2009; 17:589-596

Is Worsening Renal Function an Ominous Prognostic Sign in Patients With Acute Heart Failure?

The Role of Congestion and Its Interaction With Renal Function



WRF/Cong No WRF/Cong WRF/No Cong No WRF/No Cong:

Table 2. Predictors of Death					
			Death or	Transplant	
Variable	25th, 75th Percentiles	Univariable HR (95% CI)*	Univariable P Value	Multivariable HR (95% CI)*	Multivariable P Value
Congestion and WRF					
1: Yes WRF and yes congestion		5.35 (3, 9.55)	< 0.0001	2.44 (1.24, 4.81)	0.0097
2: No WRF and yes congestion		1.95 (0.81, 4.7)	0.1364	1.35 (0.52, 3.5)	0.5324
3: Yes WRF and no congestion		1.24 (0.75, 2.03)	0.4037	1.04 (0.62, 1.73)	0.8811
Reference: No WRF and no congestion			Ref		Ref

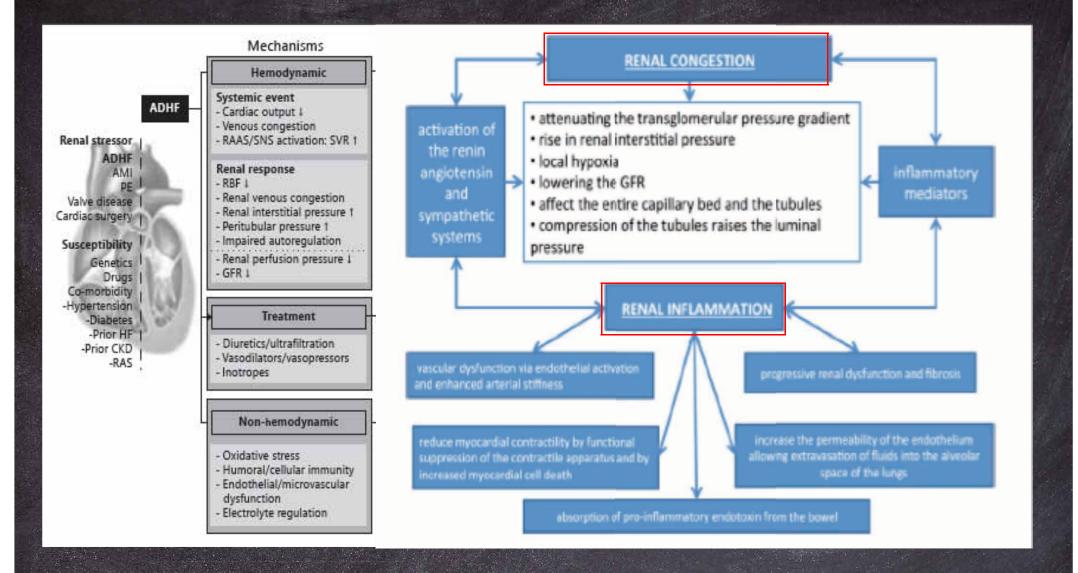
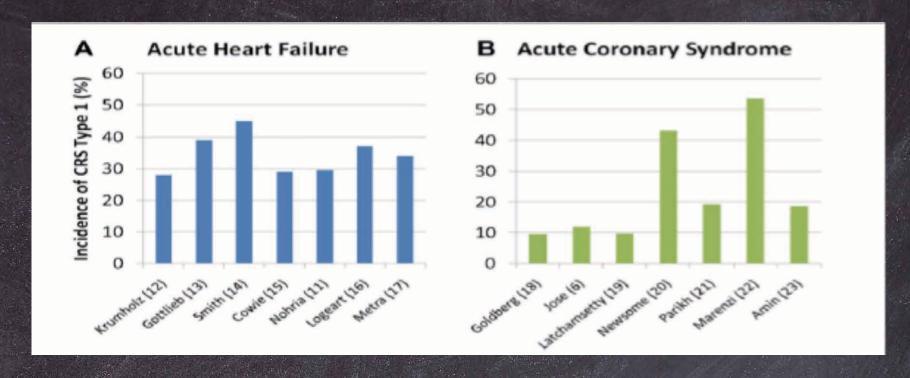

Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial[†]

Table I Grading scale for investigator-assessed signs and symptoms of congestion Signs/ Dyspnoea None Orthopnoea Continuous Fatigue None Continuous IVD (cm H₂O) Rales None Slight Moderate Marked Oedema Absent/ trace


Among patients admitted for worsening signs and symptoms of HF and reduced EF, congestion improves substantially during hospitalization in response to standard therapy alone. However, patients with absent or minimal resting signs and symptoms at discharge still experienced a high mortality and readmission rate.

Focus on renal congestion in heart failure

Take home messages:

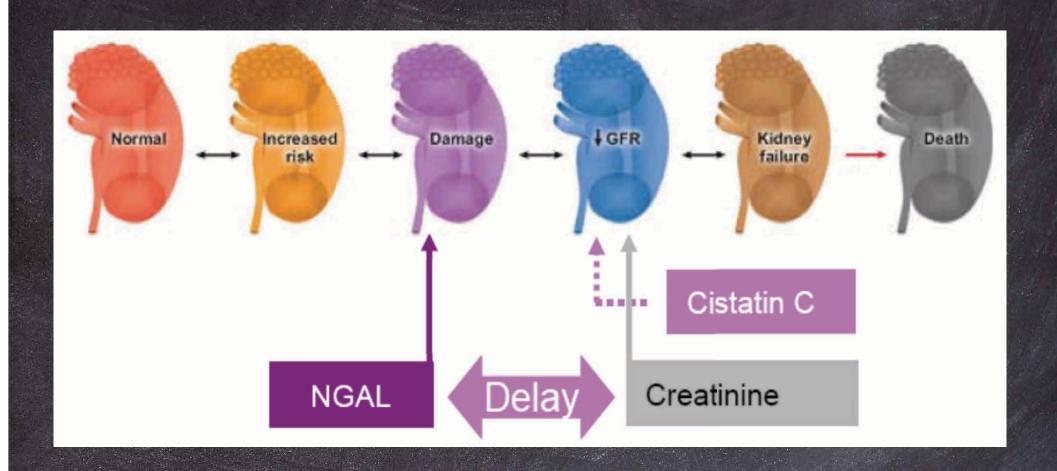
- l'aumentata incidenza di ADHF e ACS spiega il frequente riscontro di SCR tipo 1 nei pazienti ricoverati nelle UTIC

- RRT - requiring AKI occours in approximately 5-10% of patients in ICU and their mortality rate is unacceptably high (50-60%)

Cruz DN. Crit Care, 2009, 13: 211-220 DOI Nephron 2016, 134: 141-44

- come ben sappiamo si tratta di quadro i cui meccanismi fisiopatologici non sono univoci e del tutto conosciuti

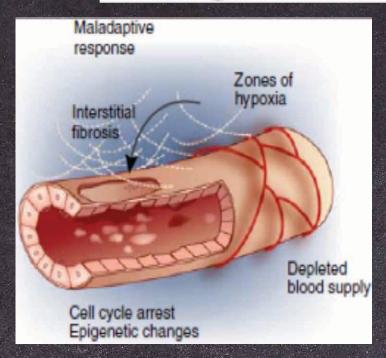
- uno dei fattori determinanti la SCR tipo 1 è classicamente rappresentato dalla riduzione della portata cardiaca (CO)

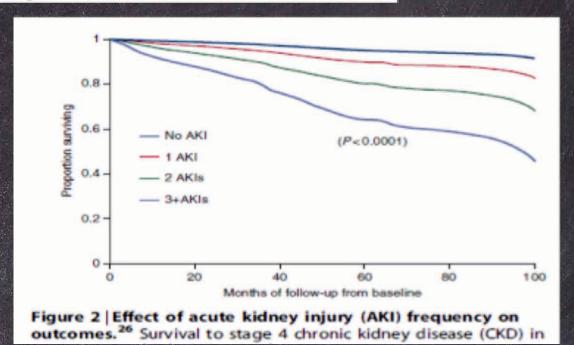

- un ruolo fisiopatologico sempre più importante viene attribuito alla CONGESTIONE VENOSA tanto da essere arrivati a parlare di

CONGESTIVE RENAL FAILURE

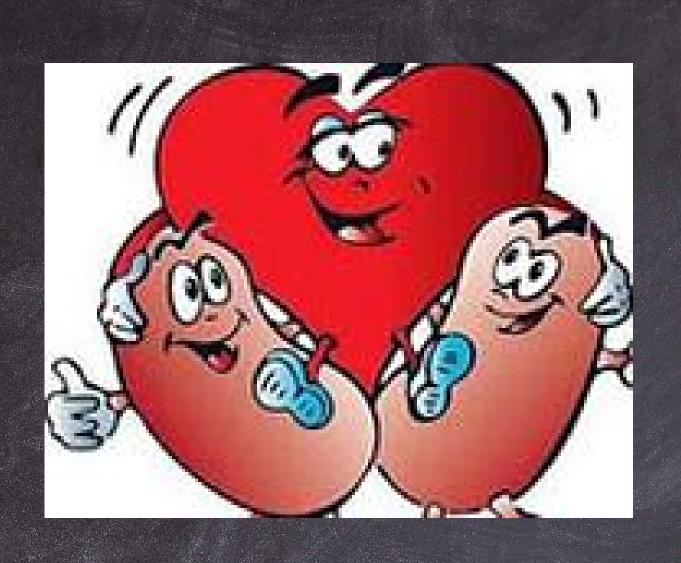
- sicuramente i meccanismi emodinamici sono più complessi a seconda delle interazioni che si stabiliscono tra CONGESTIONE e PERFUSIONE

Ī						
			'Wet and cold'	'Wet and warm'		
			Renal venous pressure t	Renal venous pressure t		
	_	Yes	RBF ↓	Disconcordantly reduced RBF		
	Congestion		Impaired autoregulation	Impaired autoregulation		
	Cong		'Dry and cold'	'Dry and warm'		
		No.	RBF i	Disconcordantly reduced RBF		
		-	Impaired autoregulation	Intrarenal microvascular dysregulation		
			Strongly decreased	Relatively preserved		
	Systemic perfusion					


- necessità di identificare markers precoci di danno renale



 e' stato stabilito anche il ruolo di meccanismi NON EMODINAMICI tra i quali


Infiammazione, Risposta Immunitaria

Acute kidney injury and chronic kidney disease: an integrated clinical syndrome

Physicians must provide long-term follow-up to patients with first episodes of AKI, even if they presented with normal renal function.

