Radioterapia a basse dosi nei linfomi indolenti

Umberto Ricardi

Indolent lymphomas

- Approximately 40–45 % of all NHL (follicular lymphoma 25%; SLL 6%, Marginal zone 10%)
- Thorough staging with bone marrow biopsy and FDG-PET essential
- Minority of patients present with localised disease
- Highly radiosensitive
- Therapy guidelines
 - Stage I/II: radiotherapy
 - Stage III/IV: systemic treatment, when needed

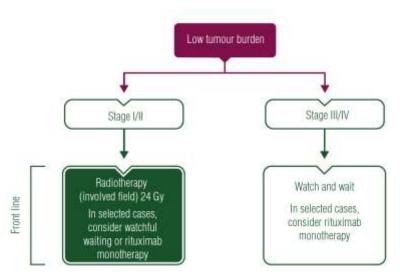
Follicular Lymphomas Treatment of stage I and II

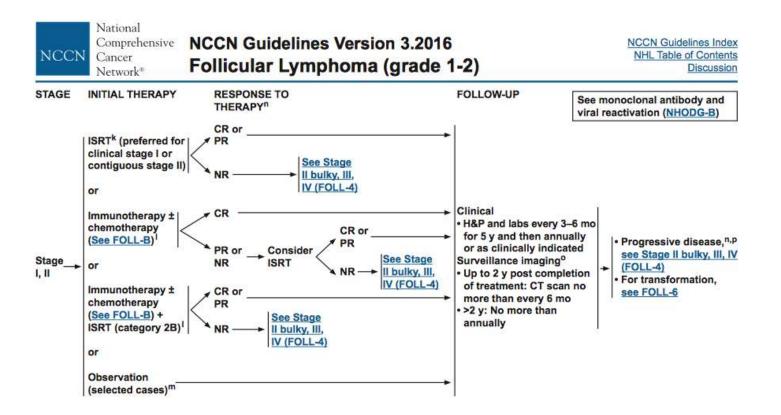
- Standard: Involved Field Radiotherapy (IFRT), historically 36-40 Gy
- The shape of the survival curve suggests a possible plateau in the potential for a cure
- Most relapses occur outside the radiation field

	5 years		10 years	15 years	20 years
Survival	82%	64%	44%	35%	
Relapse-free	55%	44%	40%	37%	

<u>Results of radiotherapy in stage I/II (Stanford, 177 pts):</u>

Ref.: MacManus, MP et al.; JCO 14: 1282-90 (1996)

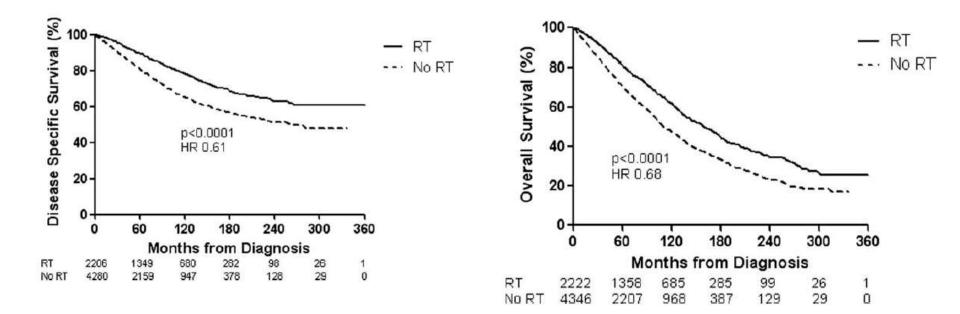



clinical practice guidelines

Annals of Oncology 27 (Supplement 5): v83-v90, 2016 doi:10.1093/annonc/mdw400

Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

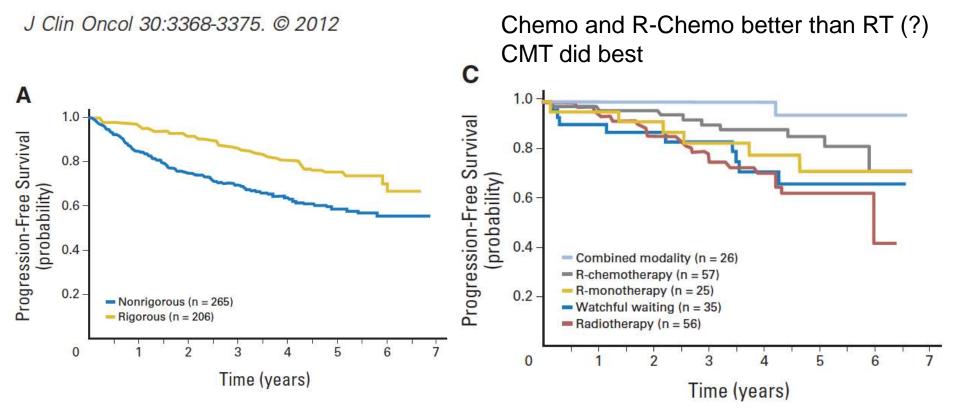
M. Dreyling¹, M. Ghielmini², S. Rule³, G. Salles⁴, U. Vitolo⁵ & M. Ladetto⁶, on behalf of the ESMO Guidelines Committee^{*}



Improved Survival in Patients With Early Stage Low-Grade Follicular Lymphoma Treated With Radiation *Cancer* 2010;116:3843-51

A Surveillance, Epidemiology, and End Results Database Analysis

Thomas J. Pugh, MD; Ari Ballonoff, MD; Francis Newman, MS; and Rachel Rabinovitch, MD



Radiation Therapy has low toxicity, high efficacy (but under-utilised)

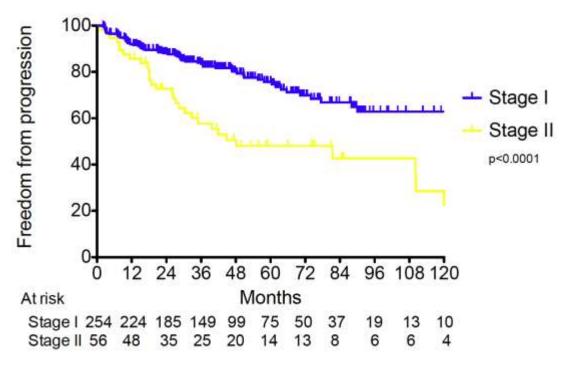
Effectiveness of First-Line Management Strategies for Stage I Follicular Lymphoma: Analysis of the National LymphoCare Study

Jonathan W. Friedberg, Michelle Byrtek, Brian K. Link, Christopher Flowers, Michael Taylor, John Hainsworth, James R. Cerhan, Andrew D. Zelenetz, Jamie Hirata, and Thomas P. Miller

Of 471 patients with stage I follicular lymphoma, 206 patients underwent rigorous staging

14th International Conference on Malignant Lymphoma Palazzo dei Congressi, Lugano, Switzerland, June 14-17, 2017

Outcome of curative radiotherapy for localised follicular lymphoma in the era of ¹⁸F-FDG PET-CT staging: an international collaborative study on behalf of ILROG.


Jessica L. Brady MBBCh FRCR^{*1}, Michael S. Binkley MD MS^{*2}, Carla Hajj MD³, Monica Chelius MD³, Karen Chau BA³, Mario Levis MD⁴, Seo Hee Choi MD¹¹, Chang Ok Suh MD¹¹, Sara Hardy MD¹⁰, Louis S Constine MD¹⁰, Anders Krog Vistisen MD⁸, Scott Bratman MD PhD², Gabriele Reinartz MD⁹, Hans Eich MD⁹, Masahiko Oguchi MD⁵, Youlia Kirova MD⁶, Andrea Ng MD⁷, Victoria S Warbey¹ Tarec El-Galaly MD⁸, Andrea Riccardo Filippi MD⁴, Umberto Ricardi MD⁴, Joachim Yahalom MD³, Richard T. Hoppe MD², N. George Mikhaeel MBBCh, MSc, FRCR¹

Hypothesis: more accurate staging will lead to better patients selection for tretament with ISRT, with consequent improvement in clinical results

RESULTS

- **310 pts** treated from 2000-2016 at 11 centres were eligible
- Pre-treatment characteristics:
 - age (median 58 yrs, range 20-84)
 - female sex (n=160, 51.6%)
 - stage I disease (n=254, 81.9%)
 - FLIPI score (median 1, range 0-3)
 - B-symptoms (n=2, 0.6%)
 - bulk of disease (median 2.5 cm, range 0.2-10)
 - extranodal disease (n=83, 26.8%)
- Median RT dose was 30 Gy (range 24-36)
- Median follow up was 50 months (range 3.2-174.6)
- 222/310 (71.6%) pts remain disease free
- Only 1 case of grade 3 toxicity
- 6 pts relapsed in field (1.9%) and 2 had marginal recurrences (0.6%)
- 80 pts (25.8 %) relapsed at distant sites (90.9% of all relapses)

5 yrs FFP and OS were 70.2% & 95.8%

5 yrs FFP was 74.3% for stage I vs 48.1% for stage II (p<0.0001)

Treatment with 6 cycles of CVP or R-CVP after Involved Field Radiation Therapy (IFRT) Significantly Improves Progression-free Survival Compared to IFRT alone in Stage I-II Low Grade Follicular Lymphoma

Results of an International Randomized Trial

Presented ASTRO 2016 and ICML 2017

Study Schema

- 150 patients from 21 centres in Australia NZ and Toronto enrolled from Feb 2000 to July 2012
- Protocol amendment 2006 mandated Rituximab in Arm B
 Arm A:

Eligibility:

-Follicular Lymphoma -Grades 1, 2 or 3a

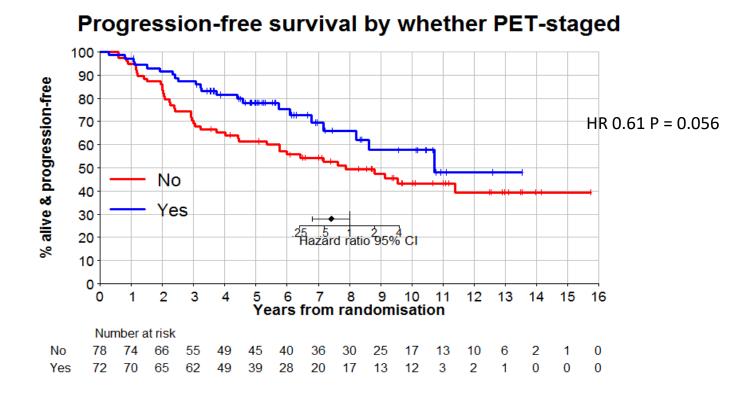
-Stage I or II

Randomize

Stratify:

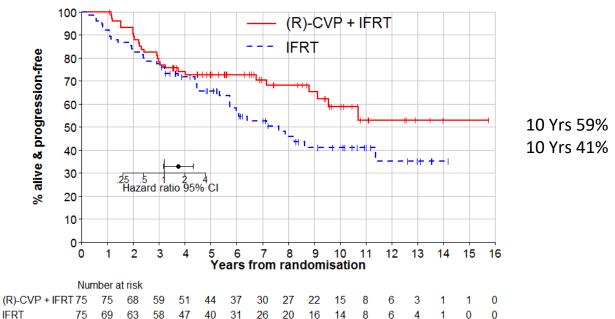
•Treating Centre

- •Stage (I or II)
- •Age (<60 or <u>></u> 60)
- PET Staging


Arm B: IFRT 30 Gy + (R)-CVP x 6

IFRT 30 Gy

Follow up with annual CT



Effect of PET

ONC LOGY

Results: Primary Objective: PFS

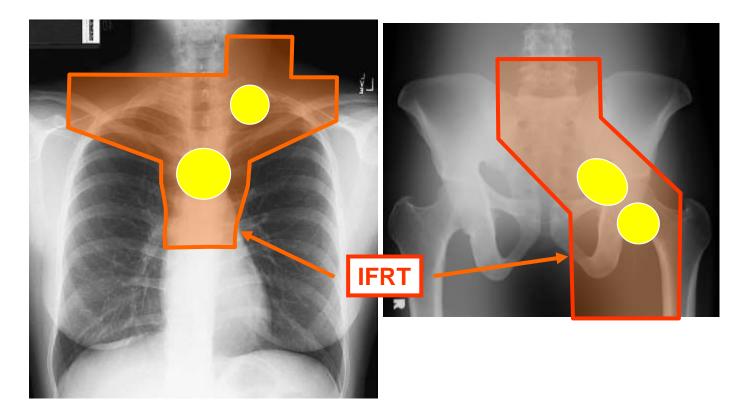
Progression-free survival by arm

Factor	Level	Ν	0	O/E	HR	95% CI	Р
Arm	(R)-CVP+IFRT	75	26	0.758	0.57	0.34 to 0.95	0.033
Strata (8 strata):	IFRT	75	38	1.280	1.77	1.05 to 2.95	

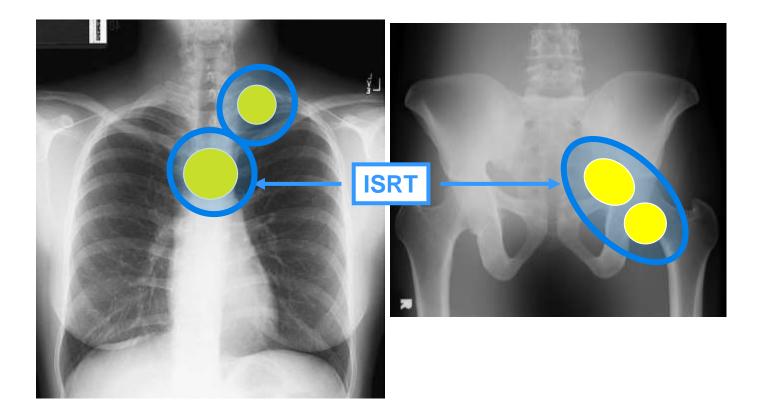
ONC LOGY

What Volume should be treated with radiotherapy?

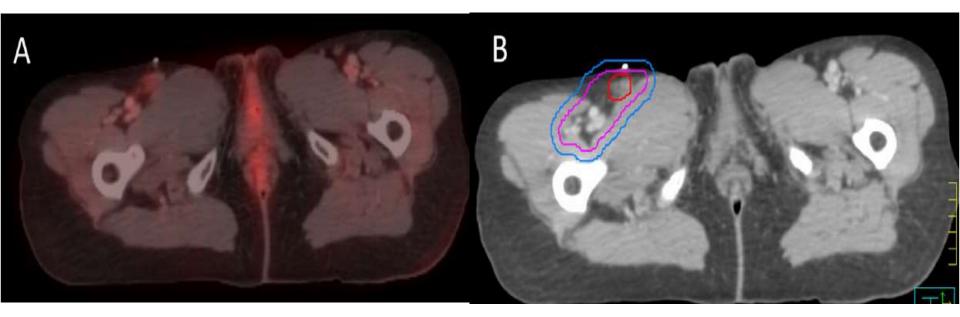
Extended Field vs Involved Field vs Involved Site/Node


No effect of field size on PFS or OS

Campbell BA et al . Involved regional radiotherapy versus involved node radiotherapy, Cancer 116, 3797, 2010

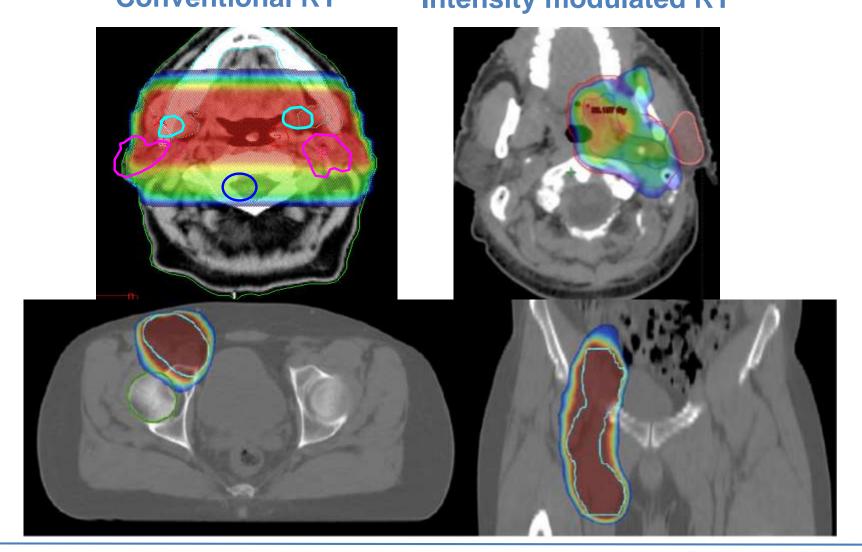

Development of Radiation Volumes

Involved Field: 2D planning, based on bony landmarks


Involved Site 3D planning, based on lymphoma volume

Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

ISRT: Localized indolent lymphoma

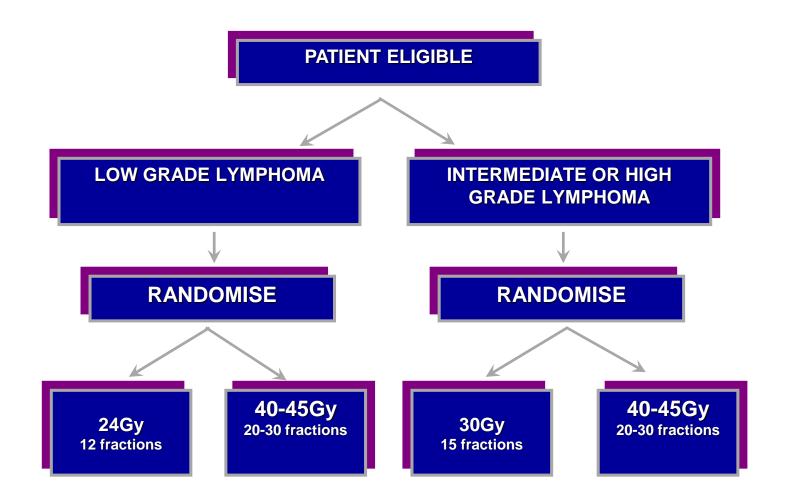


The CTV must be designed to encompass suspected subclinical disease based on the pre intervention GTV imaging The CTV should incorporate GTV and include adjacent lymph nodes in that site and margin dictated by the clinical situation

Illidge et al, IJROBP, 2014

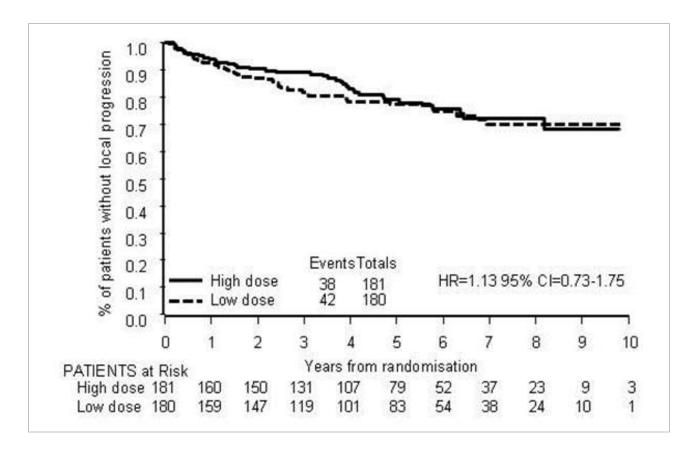
Conformal planning and precise delivery Conventional RT Intensity modulated RT

What Radiation Dose?

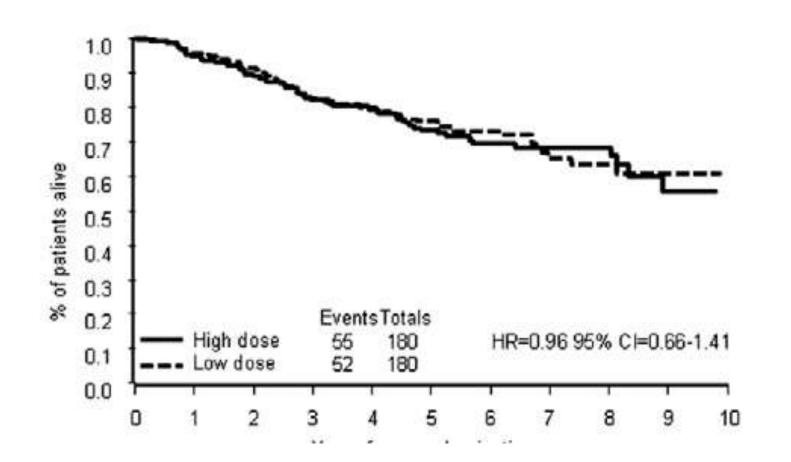


Hypothesis: Is more dose better?

LET'S HAVE ONE MORE AND THEN WE'LL HEAD BACK TO WORK


Reduced dose radiotherapy for NHL : A randomised phase III trial 360 indolent NHL (mostly follicular and MZL) randomized

Lowry L et al Radiother Oncol, 100, 86-92, 2011


RT dose 24 Gy vs 40-45 Gy in indolent NHL

¹ Lisa Lowry, Paul Smith, Wendi Qian, Stephen Falk, Kim Benstead, Tim Illidge, David Linch, Martin Robinson, Andrew Jack, Peter Hoskin *'Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: A randomised phase III trial*' Radiotherapy and Oncology 100 (2011) 86–92

INDOLENT LYMPHOMAS: Overall Survival

Lowry et al. 2011

ONCOLOGY

The discovery that small doses of radiotherapy could eradicate low-grade lymphomas was purely due to serendipity

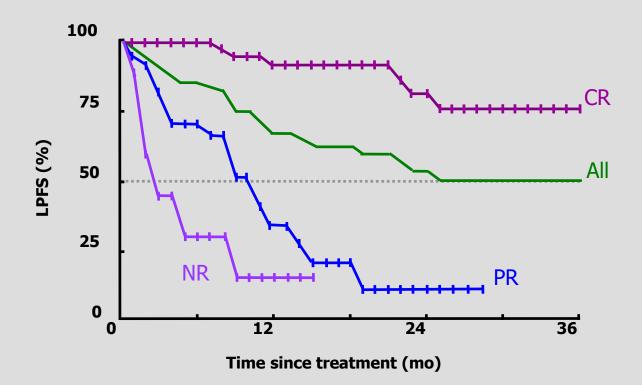
 Institute Gustave Roussy (IGR): patient refused additional palliative WAI after receiving 4 Gy

• At follow-up found to be in CR

Girinsky et al. Int J Radiat Oncol Biol Phys 51 (1), 148-155. 2001

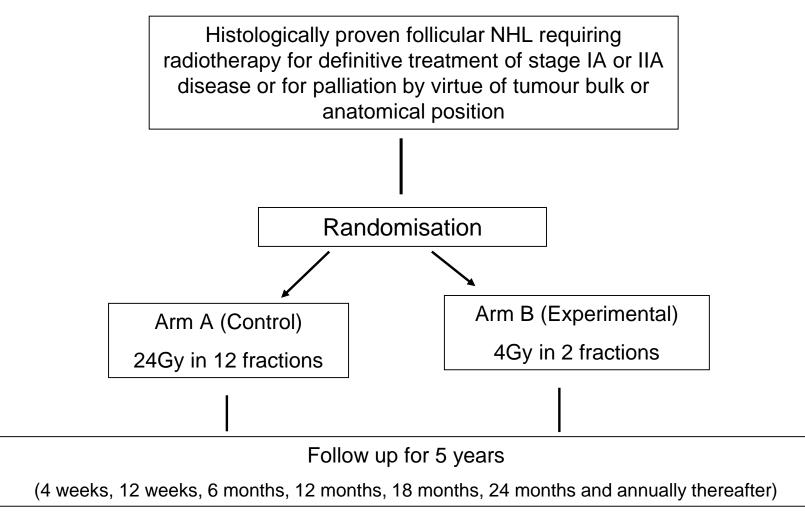
Advantages of "Boom-Boom"

- Short treatment duration.
- Minimal morbidity. No myelosuppression.
- High response rate similar to that obtained with primary therapy.
- Effective and simple re-treatment
- Rapid response onset.
- Significant LPFS interval.



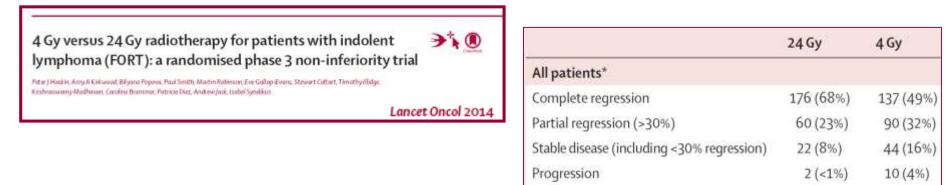
109 pts with 304 sites : Overall RR 92%

High Response Rates and Lasting Remissions After Low-Dose Involved Field Radiotherapy in Indolent Lymphomas


Journal of Clinical Oncology, Vol 21, No 13 (July 1), 2003: pp 2474-2480

By R.L.M. Haas, Ph. Poortmans, D. de Jong, B.M.P. Aleman, L.G.H. Dewit, M. Verheij, A.A.M. Hart, M.H.J. van Oers, M. van der Hulst, J.W. Baars, and H. Bartelink

FoRT: Study design : A randomised trial of low dose radiotherapy for follicular lymphoma



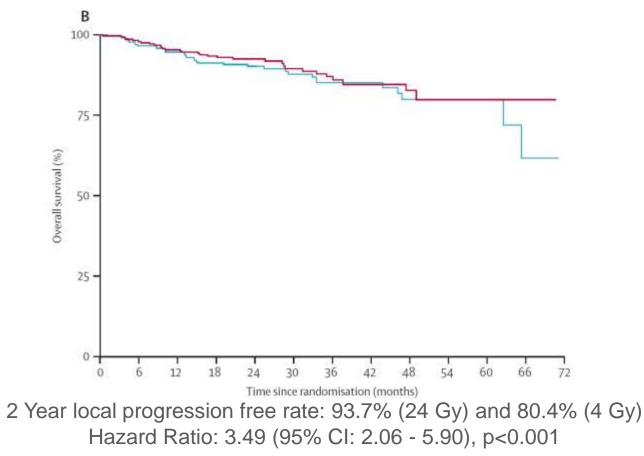
Follicular	157 (53%)	176 (56%)
Marginal zone	24 (8%)	22 (7%)
Other	18 (6%)	18 (6%)
Chronic lymphocytic leukaemia	1 (<1%)	1 (<1%)
Classical Hodgkin's lymphoma	0	1 (<1%)
Nodular lymphocyte predominant Hodgkin's lymphoma	1 (<1%)	0
Diffuse large B-cell lymphoma	9 (3%)	9 (3%)
Diffuse large B-cell lymphoma with underlying follicular	5 (2%)	4 (1%)
Soft-tissue plasmocytoma	1 (<1%)	1 (<1%)
Diffuse follicle centre lymphoma	1 (<1%)	2 (<1%)
Tested, no diagnosis	35 (12%)	32 (10%)
Insufficient material or unclear diagnosis	25 (8%)	23 (7%)
No definitive evidence of lymphoma	5 (2%)	6 (2%)
Reactive changes only	5 (2%)	<mark>3 (</mark> 1%)
No central review	65 (22%)	67 (21%)

Radiological stage at randomisation		
IA	124 (41%)	135 (43%)
IB	1 (<1%)	2 (<1%)
П	55 (18%)	53 (17%)
111	54 (18%)	57 (18%)
IV	34 (11%)	30 (10%)
Missing	31 (10%)	38 (12%)
Previous treatment		
Previous chemotherapy	97 (32%)	110 (35%)
Previous radiotherapy	77 (26%)	74 (23%)
Reason for radiotherapy		
Curative	119 (40%)	129(41%)
Palliative	180 (60%)	186 (59%)

Clinical Applications

Total

260


281

	24 Gy		4 Gy	p value*	
	Complete response (%)	Complete response plus partial response (%)	Complete response (%)	Complete response plus partial response (%)	
All patients	176/260 (68%)	236/260 (91%)	137/281 (49%)	227/281 (81%)	0.0095
Follicular lymphoma	152/226 (67%)	205/226 (91%)	116/243 (48%)	194/243 (80%)	0.0096
Marginal zone lymphoma	24/34 (71%)	31/34 (91%)	21/38 (55%)	33/38 (87%)	0.71
Stage I	78/102 (76%)	97/102 (95%)	62/115 (54%)	93/115 (81%)	0.0015
Stage II	21/50 (42%)	39/50 (78%)	22/48 (46%)	37/48 (77%)	0.91
Curative intent	71/95 (75%)	90/95 (95%)	57/105 (54%)	86/105 (82%)	0.0053
Curative intent, confirmed† follicular lymphoma only	38/46 (83%)	44/46 (96%)	35/60 (58%)	47/60 (78%)	0.011

4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial

Peter J Hoskin, Amy A Kirkwood, Bilyana Popova, Paul Smith, Martin Robinson, Eve Gallop-Evans, Stewart Coltart, Timothy Illidge, Krishnaswamy Madhavan, Caroline Brammer, Patricia Diez, Andrew Jack, Isabel Syndikus

Radical or palliative FL or MZL 299 sites assigned to 24 Gy and 315 sites to 4 Gy Lancet Oncol 2014; 15: 457-63

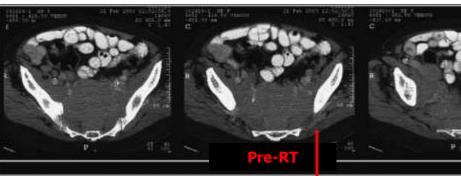
UK NCRI FORT trial Summary and conclusion

 4 Gy in 2 fractions is effective (ORR 74.1%; CR rate: 44.3%, PR rate: 29.8%) and may be considered for palliative treatment or retreatment

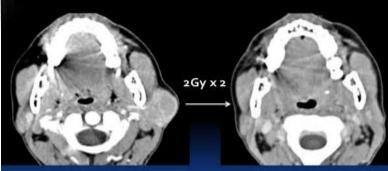
Whom to Boom-Boom?

- Follicular
- Mantle-cell
- CLL/SLL
- Marginal zone

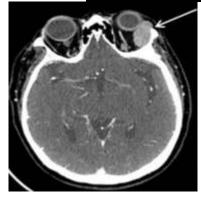
- Relapsed, refractory to systemic therapy
- As an alternative adequate first-line ?

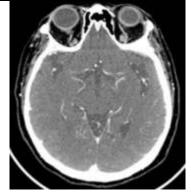

Clinical Applications

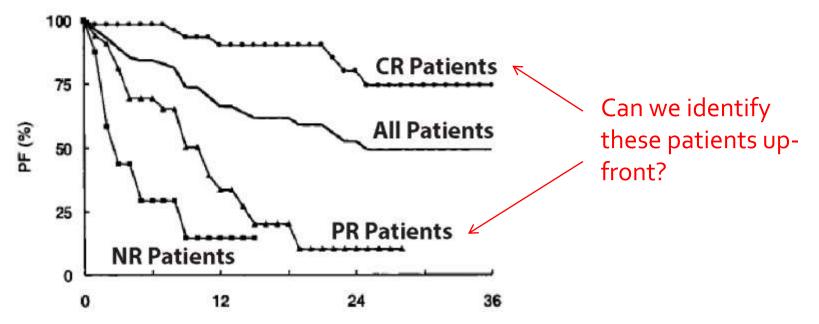
Author/year	N° pt s	Primary disease	Primary endpoints	Secondary endpoints
Ganem /1994	27	FL 74%	CR 37%, PR 52%	Median duration of CR 17 mo
Sawyer/1997	11	FL 54%	CR 36%, PR 54%	
Girinsky/2001	48	FL 66%	CR 57%, PR 24%	Median duration of CR 24 mo
Johannson/200 2	22	FL 68%	CR 61%, PR 31%	Median duration of CR 22 mo
Haas/2003	109	FL 88%	ORR 92%, CR 61%, PR 42%	Median time to PD 14 mo; Median duration of CR 42 mo
Haas/2005	71	CLL 23, MCL 17, DLBCL 13, FL 18	ORR 87%, CR 48%, PR 39%	Median time to progression 12 mo ; median time to local progression 22 mo
Ng/2006	10	Indolent NHL	CR 70%, PR 20%	
Luthy/2008	33	FL 85%	ORR 95%, CR 84%, PR12%	
Haas/2005	71	FL 0%	CR 48%, PR 39%	Median duration of CR 23 mo
Murthy/2008	36	FL 44%	ORR 75%, CR 44% for indolent, 23% for aggressive	Median duration of CR 15 mo
Haas/2009	9	NLPHL	ORR 89%, CR 67%, PR 22%, SD 11%	
Rossier/2011	43	FL 56%, CLL 44%	ORR 90%, CR 28%, PR 35%, SD 26%	Median time to in-field progression 21 mo, median time to out-field progression 8 mo
Chan/2011	54	56% Indolent NHL	ORR 81%, CR 49%, PR 32%	2yr-LPFS 50%
Russo/ 2012	127	FL 66%	ORR 82%, CR 57%, PR 25%	Median time to first recurrence 13.6 mo
Girinsky/2012	10	Pulmonary MALT	CR 60%	5-yr PFS 87.5%
Fasola/2013	27	Orbital MALT	ORR 100%, CR 85%	2yr-LPFS 100%
Konig/2016	45	Orbital MALT	ORR 100%	2yr-LPFS 100%
Pinnix /2016	22	Orbital MALT 64%; FL 23%	ORR 100%, CR 86%, PR 14%	Median time to CR 3.76 mo; 1 and 2yr-LPFS 100% and 75%
Furlan/2016	23	DLBCL	ORR 70% , CR 30%, PR 39%	Median duration of response 6 mo (range, 1-39 mo)
Tanaka/2016	30	DLBCL	CR 45% , PR 36%	
OVERALL	829	FL 45%	0RR 89%, CR 56%	Median duration of response 20 mo.



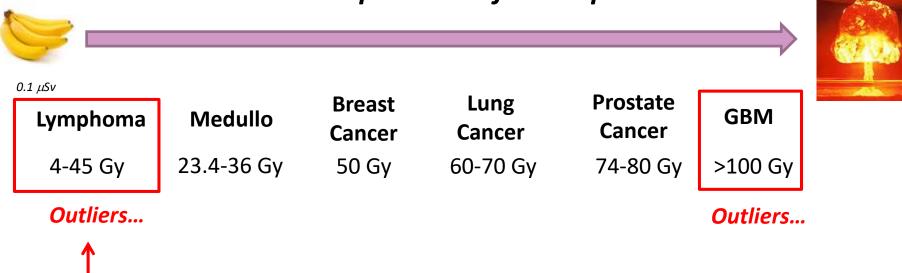
Clinical Applications







Response to very low dose RT is variable


Our key questions:

1. Are there molecular biomarkers that can predict these differences?

2. What about gene expression profiles?

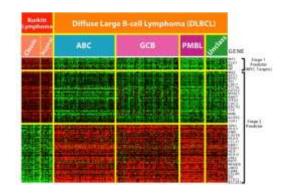
The wide spectrum of RT responses*

Imagine a 10-fold spread in RT dose for prostate cancer...

Our Central Hypothesis:

- 1. Dramatic variations in radiosensitivity can be explained by molecular differences in the tumor
- 2. Gene expression signatures can be used to predict RT response and to better stratify patients

*Definitive vs. post-op not separated... these doses are just for talking points...


What Drives Radiation Sensitivity in Lymphoma?

The old radiobiology view of RT sensitivity in lymphoma

Lymphoma = Apoptosis = Radiosensitive

RT sensitivity in lymphoma, in the molecular age...

Lymphoma gene expression profiles may predict differences in radiosensitivity

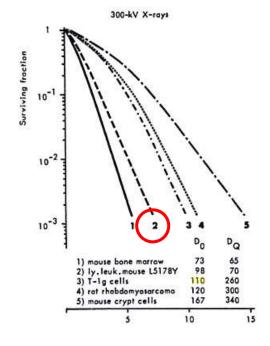
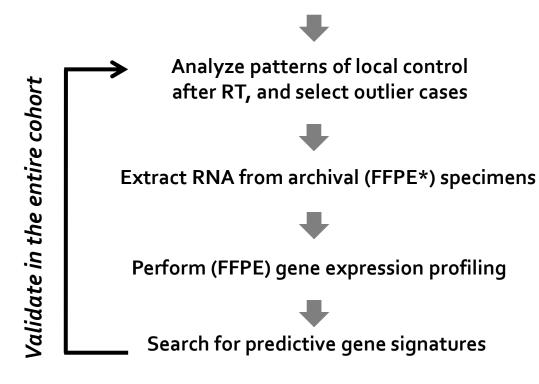
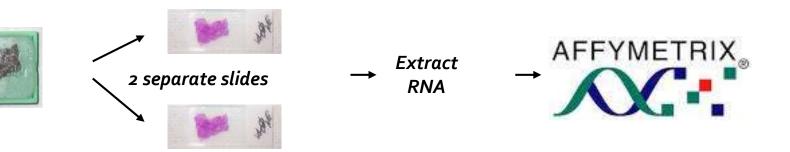
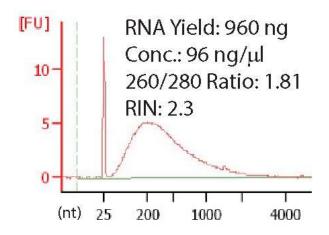



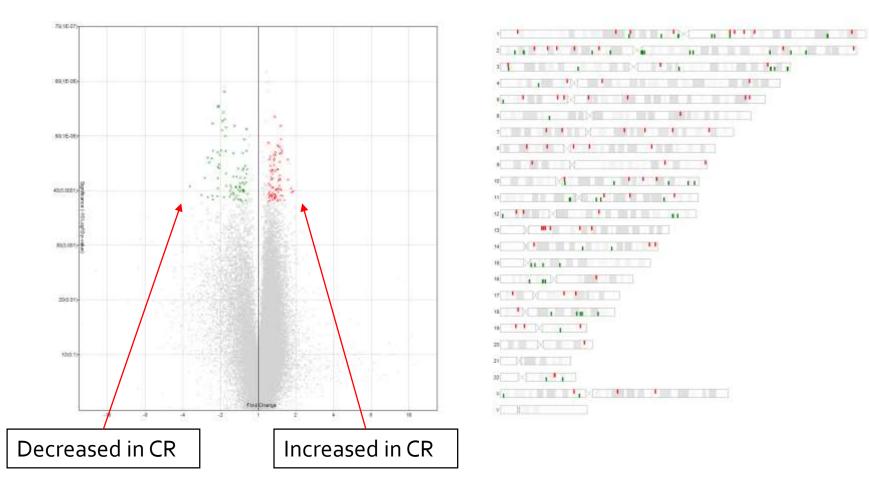
Figure from: Radiobiology for the Radiologist By Eric J. Hall, Amato J. Giaccia

Materials and Methods: Our Approach


The Yale/MSK Lymphoma GEP Collaboration

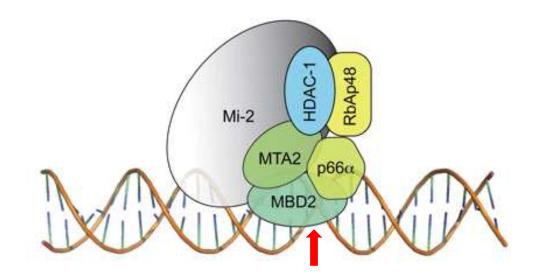

Create patient database for low grade lymphomas

*FFPE=Formalin-fixed, paraffin-embedded tissue


Whole transcriptome profiling with FFPE extracted RNA samples

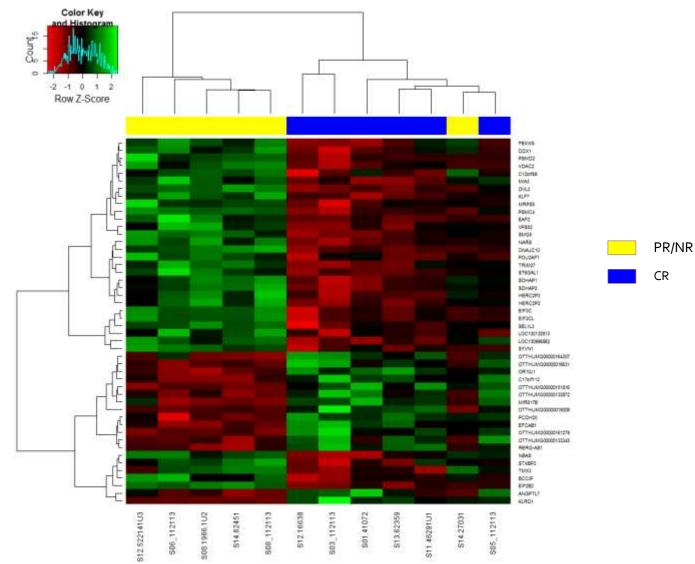
Whole transcriptome profiling with FFPE extracted RNA samples

160 differentially expressed regions with FC > 1.2 and FDR < 0.055


Increased expression in CR vs. PR/NR

Gene	CR Avg Exp.	NR Avg. Exp	Fold Chang	ge Gene Description
MIR517B	4.94	4.15	1.73	microRNA 517b
MGC13053	5.89	5.19	1.62	uncharacterized MGC13053
OR10J1	4.92	4.32	1.52	olfactory receptor, family 10, subfamily J, member 1
C17orf112	5.06	4.48	1.49	chromosome 17 open reading frame 112
PART1	5.99	5.42	1.48	prostate androgen-regulated transcript 1 (non-protein coding)
SNORD114-20	4.71	4.18	1.44	small nucleolar RNA, C/D box 114-20
TRDV1	6.23	5.71	1.44	T cell receptor delta variable 1
VHLL	5.44	4.96	1.39	von Hippel-Lindau tumor suppressor-like
RERG-AS1	5.46	5	1.37	RERG antisense RNA 1
NRXN1	5.51	5.07	1.36	neurexin 1
ZNF727	6.45	6.01	1.35	zinc finger protein 727
EFCAB1	5.54	5.12	1.34	EF-hand calcium binding domain 1
KLRD1	6	5.63	1.3	killer cell lectin-like receptor subfamily D, member 1
SORBS1	6.05	5.68	1.29	sorbin and SH3 domain containing 1
TRBV6-1	4.83	4.46	1.29	T cell receptor beta variable 6-1
ANGPTL7	6.34	5.99	1.28	angiopoietin-like 7
PCDH20	5.52	5.2	1.25	protocadherin 20
GABRA2	5.52	5.2	1.25	gamma-aminobutyric acid (GABA) A receptor, alpha 2

Decreased expression in CR vs. PR/NR


Gene	CR Avg Exp.	NR Avg. Exp	Fold Cha	old Change Gene Description			
MBD2	8.95	10.76	-3.51	methyl-CpG binding domain protein 2			
RBM6	7.7	9.2	-2.82	RNA binding motif protein 6	Associated with		
SYVN1	9.05	10.47	-2.68	synovial apoptosis inhibitor 1, synoviolin	chromatin modification in		
SRGAP2B	7.87	9.22	-2.54	SLIT-ROBO Rho GTPase activating protein 2B (pseudogene)	cancers		
EIF3C	8.7	10.03	-2.53	eukaryotic translation initiation factor 3, subunit C			
ANKRD36	8.69	9.91	-2.33	ankyrin repeat domain 36; ankyrin repeat domain 36C			
DNAJC10	7.48	8.69	-2.31	DnaJ (Hsp40) homolog, subfamily C, member 10			
EIF3CL	8.66	9.86	-2.3	eukaryotic translation initiation factor 3, subunit C			
ST6GAL1	7.5	8.58	-2.11	ST6 beta-galactosamide alpha-2,6-sialyltranferase 1			
LOC100996862	9.23	10.3	-2.1	ankyrin repeat domain-containing protein 36A-like			
PSMC4	6.91	7.98	-2.1	proteasome (prosome, macropain) 26S subunit, ATPase, 4			
SDHAP1	7.69	8.75	-2.09	succinate dehydrogenase complex, subunit A,			
EAF2	6.7	7.73	-2.05	ELL associated factor 2			
SEL1L3	8.85	9.88	-2.05	sel-1 suppressor of lin-12-like 3 (C. elegans)			
NARS	7.61	8.56	-1.94	asparaginyl-tRNA synthetase			
POU2AF1	7.72	8.67	-1.93	POU class 2 associating factor 1			
HERC2P9	7.92	8.82	-1.87	hect domain and RLD 2 pseudogene 9			
HERC2P2	8.14	9.01	-1.83	hect domain and RLD 2 pseudogene 2			

Are the genes relevant to radiosensitivity?

<u>4-fold</u> reduction in MBD₂ mRNA in CR patients

CR vs. PR/NR Gene Pathways

- Intrinsic radiosensitivity exists, but molecular features may trump histology
- "Outlier treatment responders" may provide molecular insights for RT responses
- Archival FFPE tissue now can be used readily for gene expression profiling
- FFPE gene profiling is a viable approach to identify RT response signatures
- RT gene signatures could help better direct treatment choices in lymphoma

Studies are ongoing and we are actively seeking collaborators!

•RT remains treatment of choice for majority of stage I/II₁ indolent lymphomas, resulting in long term progression free survival and possible "cure" achievable with very low morbidity

"There is no doubt that radiation remains the most active single modality in the treatment of most types of lymphoma"

James O. Armitage

