Update: Le gliflozine nella terapia dello scompenso cardiaco del paziente con diabete mellito di tipo 2

Fabio Broglio

Università degli Studi di Torino AOU Città della Salute e della Scienza di Torino

mind To move

www.mindtomove.it spin-off accademico dell'Università degli Studi di Torino

A Overall HHF

HR (95% CI)

B HHF by ASCVD status

	Treatment		Placebo					
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Favors treatment	Favors placebo	Weight, %
atients with ASCVD								
EMPA-REG OUTCOME	126/4687	9.4	95/2333	14.5	0.65 (0.50-0.85)			19.62
CANVAS program	NA/3756	7.3	NA/2900	11.3	0.68 (0.51-0.90)			17.13
DECLARE-TIMI 58	151/3474	11.1	192/3500	14.1	0.78 (0.63-0.97)	├-●		29.66
CREDENCE	59/1113	20.6	92/1107	33.2	0.61 (0.44-0.85)			12.74
VERTIS CV	139/5499	7.3	99/2747	10.5	0.70 (0.54-0.90)			20.84
Fixed-effects model (Q	e=1.97; df=4; P	=.74; <i>I</i> ² = 0.0%)			0.70 (0.62-0.78)	\diamond		
atients without ASCVD								
CANVAS program	NA/2039	2.6	NA/1447	4.2	0.64 (0.35-1.15)	•		16.38
DECLARE-TIMI 58	61/5108	3.0	94/5078	4.6	0.64 (0.46-0.88)			55.07
CREDENCE	30/1089	10.6	49/1092	17.5	0.61 (0.39-0.96)	⊢		28.56
Fixed-effects model (C	$= 0.03 \cdot df = 2 \cdot P$	$= 99 \cdot l^2 = 0.0\%$			0.63 (0.50-0.80)			

Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes JAMA Cardiology | Original Investigation A Meta-analysis

Inibitori SGLT2

bonnel, MD; David Z. I. Cherney, MD, PhD; an Huyck, DrPH; Ira Gantz, MD;

o, MD, PhD; Bernard Charbonr Sc; Shuai Wang, PhD; Susan H 1, MD

P.Ca

n, PhD; Fra MD; Miche MD; Chris

Shih,

Darren K. McGuire, MD, MHSc; Wei Samuel Dagogo-Jack, MD, DSc; Rich Steven G. Terra, PharmD; Urszula M

HR (95% CI)

1

2

0.2

USE OF GLUCOSE-LOWERING MEDICATIONS IN THE MANAGEMENT OF TYPE 2 DIABETES

Review SGLT2 Inhibition in Heart Failure with Preserved Ejection Fraction — The New Frontier

Inês Aguiar-Neves¹, Diogo Santos-Ferreira^{1,2}, Ricardo Fontes-Carvalho^{1,2,*}

		rable 1. Summary of Major Kandomiz	eu Chinear Thais of SGL12 Innibitors in	пгры.
Drug name	Trial name	Study population	Primary outcome	Main results
Sotagliflozin	SOLOIST-WHF	1222 patients (20% with LVEF >50%) Age ≥18 years Recent HHF T2DM	Composite of total number of CV deaths and HF exacerbations (HHF or urgent visit)	HR for composite outcome: 0.67 (95% CI 0.52–0.85) HR for CV death: 0.84 (95% CI 0.58–1.22) HR for WHF: 0.64 (95% CI 0.49–0.83)
Empagliflozin	EMPEROR-Preserved	5988 patients Age ≥18 years NYHA II–IV LVEF >40%	Composite of CV death or HHF	HR for composite outcome: 0.79 (95% CI 0.69–0.90) HR for CV death: 0.91 (95% CI 0.76–1.09) HR for HHF: 0.71 (95% CI 0.60–0.83)
	EMPERIAL-Preserved	315 patients Age ≥18 years LVEF >40%	6MWD change after 12 weeks	Change in 6MWD: 4.0m (95% CI -5.0-13.0)
Denselifiarie	DELIVER	6263 patients Age ≥40 years NYHA II–IV LVEF >40% (including prior LVEF ≤40%)	Composite of CV death or HF exacerbations (HHF or urgent visit)	HR for composite outcome: 0.82 (95% CI 0.73–0.92) HR for CV death: 0.88 (95% CI 0.74–1.05) HR for WHF: 0.79 (95% CI 0.69–0.91)
Dapagiifiozin —	PRESERVED-HF	324 patients Age ≥18 years NYHA II–IV LVEF ≥45%	Change in KCCQ Clinical Summary Score after 12 weeks	Change in KCCQ: 5.8 points (95% CI 2.3-9.2)
Canagliflozin	CANONICAL	82 patients Age ≥65 years LVEF ≥50% T2DM	Change in body weight and plasma BNP levels after 24 weeks	Reduction in body weight with canagliflozin ($p = 0.019$) No significant change in BNP levels
	$\begin{array}{c} 476 \text{ patients (276 with HFpEF)} \\ \text{CHIEF-HF} & \text{Age} \geq 18 \text{ years} \\ \text{History of HF (LVEF} > 40\% \text{ for HFpEF g} \end{array}$		Change in KCCQ Total Symptom Score after 24 weeks	Change in KCCQ: 4.3 points (95% CI 0.8–7.8) Change in KCCQ (HFpEF group): 4.5 points (95% CI –0.3–9.4
Ertugliflozin	VERTIS-CV	8246 patients (1007 patients with LVEF >45%) Age \geq 40 years T2DM	Composite of CV death, non-fatal MI or non-fatal stroke	HR for composite outcome: 0.97 (95% CI 0.85–1.11) HR for first HHF: (LVEF >45%): 0.86 (95% CI 0.58–1.29)
Luseogliflozin	MUSCAT-HF (luseogliflozin vs. voglibose)	190 patients Age ≥20 years LVEF >45% T2DM	Change in plasma BNP levels after 12 weeks	Change in ratio of BNP levels: 0.93 (95% CI, 0.78–1.10)
Ipragliflozin	EXCEED	68 patients Age ≥20 years LVEF ≥50% T2DM	Change in E/e' and e' after 24 weeks	Change in E/e': -0.04 (95% CI -1.3-1.2) Change in e': 0.3 cm/s (95% CI -0.9-0.3)

Efficacy of SGLT2-inhibitors across different definitions of heart failure with preserved ejection fraction

Vincenzo De Marzo^a, Gianluigi Savarese^b, Italo Porto^{a,c}, Marco Metra^{d,e} and Pietro Ameri^{a,c}

(a)

	study			RR (95% CI)	Weight
	EMPA-REG OUTCOME			0.60 (0.33–1.09)	6.1%
s	DECLARE-TIMI58			0.92 (0.71–1.19)	14.9%
δ	VERTIS-CV			0.92 (0.73–1.16)	16.3%
ΰ	SCORED			0.58 (0.42–0.81)	12.4%
	/ ² : 56.9%; Q: 6.96	\diamond		0.78 (0.60–0.99)	49.7%
	EMPEROR-PRESERVED	-8-		0.85 (0.73–0.99)	19.5%
CTs	DELIVER			0.79 (0.69–0.92)	19.6%
R-R	SOLOIST-WHF			0.48 (0.33–0.69)	11.2%
┸	/ ² : 75.7%; Q: 8.22			0.71 (0.52–0.97)	50.3%
		~		0.75 (0.63–0.89)	100%
	/ ² : 59.7%; Q: 15.34	0 1	2		

(b) **HF** hospitalization study RR (95% CI) Weight EMPA-REG OUTCOME 2.0% 0.61 (0.29-1.27) CVOTs DECLARE-TIMI58 0.75 (0.53-1.06) 8.9% VERTIS-CV 0.87 (0.58-1.29) 6.8% /²: 0.0%; Q: 0.74 0.78 (0.61-0.99) 17.8% \sim . EMPEROR-PRESERVED 0.86 (0.74-0.99) 50.9% HF-RCTs DELIVER 0.75 (0.62-0.91) 31.3% /²: 18.1%; Q: 1.22 0.81 (0.72-0.93) 82.2% \diamond /²: 18.1%; Q: 2.09 0.81 (0.73–0.90) 100% \diamond 0 1 2

diabetes and cardiovascular disease: risk reduction and early intervention Debbie Hinnen 🗗, Davida Kruger 💿 and Melissa Magwire 🗗 2 Type

Postgraduate Medicine, 135:1, 2-12,

Patients diagnosed with type 2 diabetes should be assessed for co-existing health problems to determine the most appropriate treatment in addition to an OAD and lifestyle modifications

Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Aidin Rawshani, M.D., Araz Rawshani, M.D., Ph.D., Stefan Franzén, Ph.D., Naveed Sattar, M.D., Ph.D., Björn Eliasson, M.D., Ph.D., Ann-Marie Svensson, Ph.D., Björn Zethelius, M.D., Ph.D., Mervete Miftaraj, M.Sc., Darren K. McGuire, M.D., M.H.Sc., Annika Rosengren, M.D., Ph.D., and Soffia Gudbjörnsdottir, M.D., Ph.D.

0.0

SISTEMA NAZIONALE LINEE GUIDA DELL'ISTITUTO SUPERIORE DI SANITÀ

Linea Guida della Società Italiana di Diabetologia (SID) e dell'Associazione dei Medici Diabetologi (AMD)

SNIG

La terapia del diabete mellito di tipo 2

The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: a network meta-analysis of 23 CVOTs

Dario Giugliano^{1*}, Miriam Longo^{1,2}, Simona Signoriello³, Maria Ida Maiorino^{1,2}, Bruno Solerte⁴, Paolo Chiodini³ and Katherine Esposito^{1,2}

significantly different

Potential Mechanisms Involved in the Cardioprotective and Renoprotective Effects of Sodium–glucose Cotransporter 2 Inhibitors

Time to cardiovascular benefits of empagliflozin: a *post hoc* observation from the EMPA-REG OUTCOME trial

Subodh Verma^{1*}, Lawrence A. Leiter², Bernard Zinman³, Abhinav Sharma⁴, Michaela Mattheus⁵, David Fitchett⁶, Jyothis George⁷⁺, Anne Pernille Ofstad⁸, Mikhail N. Kosiborod⁹, Christoph Wanner¹⁰ and Silvio E. Inzucchi¹¹

Α 16 Dav 59 Day 317 HR 0.60 HR 0.28 % CI 0.08, 0.96) (95% CI 0.37, 0.98) P=0.0424 P=0.0409 HR (95% CI) empagliflozin vs. placebo cardiovascular death 0.25 Overall HR 0.62 (95% CI 0.49, 0.77) 0.063 P<0.0001 30 60 90 120 150 180 210 240 270 300 330 360 0 Censoring relative to randomization (days) в 16 Day 17 Overall HR 0.10 HR 0.65 95% CI 0.01, 0.87 (95% CI 0.50, 0.85) P=0.0372 P=0.0017 HR (95% Cl) empagliflozin vs. placebo 0.25 hospitalization for heart failure 0.063 0.0156 30 60 90 120 150 180 210 240 270 300 330 360 0 Censoring relative to randomization (days) С 16 Day 27 Overall HR 0.28 HR 0.66 % CI 0.08, 0.97 (95% CI 0.55, 0.79) P=0.0445 P<0.0001 HR (95% CI) empagliflozin vs. placebo hospitalization for HF/CV death 0.25

0.063

0 30

Figure 1 Smoothed curves for successive hazard ratios (HRs; 95% confidence intervals [CII] for empagifilozin vs. placebo for (A) cardiovascular death, (B) hospitalization for heart failure, and (C) hospitalization for heart failure/cardiovascular death (excluding fatal stroke) with a vertical line demonstrating the day the benefits reach statistical significance. HRs and 95% CIs are shown in relation to time point of censoring—treated set. Overall results apply to the complete study duration. ie complete study duration.

ESC Heart Failure 2021; 8: 2603-2607

60 90 120 150 180 210 240 270 300 330 360 Censoring relative to randomization (days)

FIRST YEAR

Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial

David Fitchett, MD Silvio E. Inzucchi, MD Christopher P. Cannon, MD Darren K. McGuire, MD, MHSc Benjamin M. Scirica, MD Odd Erik Johansen, MD, PhD Steven Sambevski, MD Egon Plarr, MS Jyothis T. Georg, MBSS, PhD Bernard Zinman. MD

000 years n/N	Rate/1000			group by
	% patient-years	HR (95% CI)	HR (95% CI)	subgroup interaction
4 137/2333 5	5.9 20.2	0.62 (0.49, 0.77)	⊢● −1	
				P=0.9492
6/275 2	2.2 7.2	0.72 (0.25, 2.01)	•	
37/961	3.9 13.0	0.63 (0.41, 0.97)	• • ••	
46/667 6	6.9 24.0	0.56 (0.38, 0.83)	⊢	
3 48/428 1	1.2 40.2	0.65 (0.44, 0.95)	⊢	
1 194/2333 8	8.3 28.6	0.68 (0.57, 0.82)	⊢● •	
				P=0.8446
11/275	4.0 13.2	0.52 (0.23, 1.19)	• • • • •	
9 51/961 5	5.3 17.9	0.71 (0.50, 1.02)	⊢	
4 59/667 8	8.8 30.7	0.73 (0.53, 1.01)	⊢	
2 73/428 1	7.1 61.1	0.64 (0.47, 0.87)	⊢	
	years n/N 4 137/2333 4 2 6/275 2 2 37/961 3 4 46/667 6 3 48/428 1 4 194/2333 4 9 51/961 4 4 59/667 4 2 73/428 1	years n/N %patient-years4137/2333 5.9 20.2 2 $6/275$ 2.2 7.2 2 $37/961$ 3.9 13.0 4 $46/667$ 6.9 24.0 3 $48/428$ 11.2 40.2 4 $194/2333$ 8.3 28.6 9 $51/961$ 5.3 17.9 4 $59/667$ 8.8 30.7 2 $73/428$ 17.1 61.1	Vears n/N %patient-yearsHR (95% Cl)4137/2333 5.9 20.2 $0.62 (0.49, 0.77)$ 2 $6/275$ 2.2 7.2 $0.72 (0.25, 2.01)$ 2 $37/961$ 3.9 13.0 $0.63 (0.41, 0.97)$ 4 $46/667$ 6.9 24.0 $0.56 (0.38, 0.83)$ 3 $48/428$ 11.2 40.2 $0.65 (0.44, 0.95)$ 4 $194/2333$ 8.3 28.6 $0.68 (0.57, 0.82)$ 9 $51/961$ 5.3 17.9 $0.71 (0.50, 1.02)$ 4 $59/667$ 8.8 30.7 $0.73 (0.53, 1.01)$ 2 $73/428$ 17.1 61.1 $0.64 (0.47, 0.87)$	Rate/1000years n/N %patient-yearsHR (95% Cl)HR (95% Cl)4137/2333 5.9 20.2 $0.62 (0.49, 0.77)$ 2 $6/275$ 2.2 7.2 $0.72 (0.25, 2.01)$ 2 $37/961$ 3.9 13.0 $0.63 (0.41, 0.97)$ 4 $46/667$ 6.9 24.0 $0.56 (0.38, 0.83)$ 3 $48/428$ 11.2 40.2 $0.65 (0.44, 0.95)$ 4 $194/2333$ 8.3 28.6 $0.68 (0.57, 0.82)$ 9 $51/961$ 5.3 17.9 $0.71 (0.50, 1.02)$ 4 $59/667$ 8.8 30.7 $0.73 (0.53, 1.01)$ 2 $73/428$ 17.1 61.1 $0.64 (0.47, 0.87)$

SISTEMA NAZIONALE LINEE GUIDA DELL'ISTITUTO SUPERIORE DI SANITÀ

Linea Guida della Società Italiana di Diabetologia (SID) e dell'Associazione dei Medici Diabetologi (AMD)

di Diabetologia

SNIG

La terapia del diabete mellito di tipo 2

¹Se la metformina non è controindicata per ridotto eGFR.
²Se la metformina non è controindicata per ridotta funzione cardiaca.
³Eccetto saxagliptin che non è indicato in caso di scompenso cardiaco.
La raccomandazione sui pazienti con eGFR< 60ml/min è debole per carenza di studi clinici effettuati su questa popolazione Si raccomanda la deprescrizione di sulfanilurre e glinidi

Lifetime risk of cardiovascular-renal disease in type 2 diabetes: a population-based study in 473,399 individuals

Ruigi Zhang^{1,2}, Jil Billy Mamza², Tamsin Morris², George Godfrey², Folkert W. Asselbergs^{3,4,5}, Spiros Denaxas^{3,6}, Harry Hemingway^{3,6} and Amitava Banerjee^{3,6,7,8*}

3 in 10 T2D patients will be diagnosed HF in their life time

Lifetime Ri

Fig. 3 Lifetime risk of individual and composite major adverse renal and cardiovascular events. Abbreviations: cardiovascular and renal diseases, CVRD; heart failure, HF; chronic kidney disease, CKD; myocardial infarction, MI; peripheral artery disease, PAD

Zhang et al. BMC Medicine (2022) 20:63

Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes

Aidin Rawshani, M.D., Araz Rawshani, M.D., Ph.D., Stefan Franzén, Ph.D., Naveed Sattar, M.D., Ph.D., Björn Eliasson, M.D., Ph.D., Ann-Marie Svensson, Ph.D., Björn Zethelius, M.D., Ph.D., Mervete Miftaraj, M.Sc., Darren K. McGuire, M.D., M.H.Sc., Annika Rosengren, M.D., Ph.D., and Soffia Gudbjörnsdottir, M.D., Ph.D.

5 risk factors: elevated HbA1c, elevated LDL, albuminuria, smoking, and elevated blood pressure

A Excess Mortality in Relation to Range of Risk Hazard Ratio	c-Factor Control o (95% CI)	B Excess Acute Myoo Risk-Factor Cont	cardial Infarction in Relatio rol Hazard Ratio	n to Range of (95% CI)	C Excess Stroke in	Relation to Range of Ri Hazard	sk-Factor Control Ratio (95% CI)	D Excess Heart Fai	lure in Relation to Range Hazard F	e of Risk-Factor Control Ratio (95% CI)
Control ≥80 yr ≥65 to <80 yr ≥55 to <65 yr	Reference Reference Reference	Control ≥80 yr ≥65 to <80 yr ≥55 to <65 yr	•	Reference Reference Reference	Control ≥80 yr ≥65 to <80 yr ≥55 to <65 yr		Reference Reference Reference	Control ≥80 yr ≥65 to <80 yr ≥55 to <65 yr		Reference Reference Reference
No risk factors ≥80 yr ≥65 to <80 yr ≥55 to <65 yr	0.99 (0.84–1.17) 1.01 (0.92–1.12) 1.15 (1.00–1.34)	No risk factors ≥80 yr ≥65 to <80 yr ≥55 to <65 yr		0.72 (0.49–1.07) 0.80 (0.69–0.93) 0.93 (0.73–1.18)	No risk factors ≥80 yr ≥65 to <80 yr ≥55 to <65 yr		0.95 (0.74–1.22) 0.90 (0.76–1.06) 0.94 (0.72–1.23)	No risk factors ≥80 yr ≥65 to <80 yr ≥55 to <65 yr		1.12 (0.89–1.41) 1.42 (1.28–1.58) 1.61 (1.31–1.97)
≥80 yr ≥65 to <80 yr ≥55 to <65 yr	0.94 (0.88-1.00) 1.05 (1.02-1.09) 1.23 (1.16-1.31)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr		1.05 (0.93–1.19) 1.05 (0.97–1.14) 1.14 (1.04–1.25)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr		1.06 (0.95-1.18) 1.11 (1.04-1.18) 1.27 (1.14-1.41)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	*	1.17 (1.08–1.27) 1.46 (1.39–1.53) 1.80 (1.63–1.98)
≥80 yr ≥65 to <80 yr ≥55 to <65 yr	0.99 (0.94–1.04) 1.17 (1.13–1.20) 1.32 (1.27–1.38)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	*	1.38 (1.27–1.49) 1.44 (1.39–1.50) 1.54 (1.44–1.65)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	*	1.13 (1.04–1.24) 1.32 (1.26–1.38) 1.59 (1.50–1.69)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	**	1.23 (1.15–1.32) 1.62 (1.56–1.68) 2.11 (1.98–2.26)
≥80 yr ≥65 to <80 yr ≥55 to <65 yr	1.13 (1.06–1.21) 1.46 (1.42–1.50) 1.63 (1.55–1.71)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	*	1.78 (1.60–1.98) 2.11 (2.02–2.20) 2.16 (2.02–2.31)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	***	1.35 (1.21–1.51) 1.73 (1.65–1.82) 2.13 (2.01–2.27)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	***	1.42 (1.31–1.54) 2.01 (1.92–2.10) 2.82 (2.63–3.02)
≥80 yr ≥65 to <80 yr ≥55 to <65 yr	1.47 (1.28–1.70) 2.10 (1.96–2.26) 2.53 (2.37–2.70)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	-+-	2.32 (1.78–3.01) 2.87 (2.62–3.14) 3.32 (3.02–3.66)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr		1.54 (1.12–2.11) 2.31 (2.09–2.55) 2.66 (2.30–3.08)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr	-+-++	1.81 (1.42–2.30) 2.88 (2.64–3.14) 3.85 (3.47–4.26)
≥80 yr ≥65 to <80 yr ≥55 to <65 yr <55 yr	1.39 (0.51-3.80) 3.10 (2.53-3.80) 3.88 (3.07-4.92) 4.99 (3.43-7.27)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr <55 yr		- 3.19 (1.23-8.28) 4.60 (3.37-6.29) 4.84 (3.78-6.21) 7.69 (5.02-11.77)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr <55 yr	+	- 2.65 (0.96-7.30) 3.54 (2.36-5.31) 2.79 (1.88-4.14) 6.23 (3.22-12.05)	≥80 yr ≥65 to <80 yr ≥55 to <65 yr <55 yr		2.76 (0.82-9.25) 3.93 (2.75-5.60) - 6.54 (4.85-8.81) - 11.35 (7.16-18.01)

Figure 1 (facing page). Adjusted Hazard Ratios for Outcomes, According to Age Category and Number of Risk-Factor Variables outside Target Ranges, among Patients with Type 2 Diabetes, as ompared with Matched Controls. Hazard ratios show the excess risk of each outcome among patients with type 2 diabetes, as compared with matched controls from the general population, according to age categories and to the number of riskfactor variables (scale, none to five) that were outside target ranges currently recommended in guidelines. The analysis included patients ith type 2 diabetes and controls matched for age, sex, and county in Sweden. We constructed a Cox hazards model for each ge category, and these models were adjusted for the covariable category"; this covariable denotes the number of risk-factor variables that were within target ranges. These Cox model analyses were performed on five imputed data sets for each age ategory, and hazard ratios were pooled from all the data sets with the use of Rubin's rule.

N Engl J Med 2018;379:633-44.

Impact of early initiation of sodium-glucose cotransporter 2 inhibitor on cardiovascular outcomes in people with diabetes and known or at risk of atherosclerotic cardiovascular disease: Propensity score matched analysis

Wen Sun^{1,2}, Alice P. S. Kong^{1,3}, Bryan P. Yan^{1,2}*

	Dx-to-Rx time ≤12 months		Dx-to-Rx time >12 months			Hazard ratio (95%CI)	P for interaction	
MACE	n/N	%	Rate/1000 person-years	n/N	%	Rate/1000 person-years		
All	30/1685	1.8	6.0	71/1685	4.2	14.2	0.27 (0.17-0.42)	
patients								
Neither ASCVD nor CV risk factor	1/317	0.3	1.1	1/280	0.4	1.3	0.52 (0.03-8.27)	0.001
CV Risk factor only	4/932	0.4	1.4	14/864	1.6	5.3	0.11(0.03-0.42)	
ASCVD	25/436	5.7	20.1	56/541	10.4	35.4	0.49(0.30-0.80)	

Table 2. MACE with Dx-to-Rx time ≤ 12 months versus > 12 months in subgroups stratified by presence or absence of known ASCVD or risk factors.

Rodica Pop-Busuj, ¹ James L. Januzz Dennis Bruemmer,³ Sonia Butalio,⁴ Jennifer B. Green,⁵ William B. Hort Colette Knight,⁷ Moshe Leui,⁸ Neda Rosouli,⁹ and Caroline R. Richardson¹⁰

Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association

Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes

Amy Groenewegen^{1*}⁽⁶⁾, Victor W. Zwartkruis², Betül Cekic¹, Rudolf. A. de Boer², Michiel Rienstra², Arno W. Hoes³, Frans H. Rutten¹ and Monika Hollander¹

Fig. 3 Incidence of cardiovascular diseases per 1000 person-years, for patients with and without diabetes, per age category

The role of sodium-glucose co-transporter-2 inhibitors in frail older adults with or without type 2 diabetes mellitus

Marc Evans¹, Angharad R. Morgan², Sarah Davies³, Hannah Beba⁴, William David Strain^{5,6}

Age and Ageing 2022; 51: 1–8

The role of sodium-glucose co-transporter-2 inhibitors in frail older adults with or without type 2 diabetes mellitus

Marc Evans¹, Angharad R. Morgan², Sarah Davies³, Hannah Beba⁴, William David Strain^{5,6}

Independent effects of 15 commonly prescribed drugs on all-cause mortality among US elderly patients with type 2 diabetes mellitus

Seo H Baik ᅝ , Clement J McDonald

	(A) Full cohort n=360437	(B) Full cohort+IPSW n=360437	(C) DM Rx incident cohort n=143693	(D) Non-DM Rx incider cohort n=44375
Rx use	HR (95% CI)	HR (95% CI)	HR (95% CI)	HR (95% CI)
Metformin	1.05 (1.02 to 1.08)*	0.92 (0.90 to 0.94)†	0.91 (0.86 to 0.96)*	1.10 (1.01 to 1.20)
Insulin	1.55 (1.51 to 1.59)†	1.40 (1.36 to 1.43)†	1.35 (1.26 to 1.45)†	1.43 (1.31 to 1.57)
Sulfonylurea	1.16 (1.13 to 1.20)†	1.06 (1.03 to 1.09)†	1.16 (1.08 to 1.24)†	1.28 (1.16 to 1.41)
Thiazolidinedione	1.03 (0.99 to 1.08)	0.96 (0.92 to 1.00)*	1.01 (0.85 to 1.20)	1.06 (0.89 to 1.27)
GLP-1 agonist	0.75 (0.70 to 0.80)†	0.78 (0.73 to 0.84)†	0.66 (0.49 to 0.88)*	0.66 (0.47 to 0.93)
DPP-4 inhibitor	0.94 (0.91 to 0.98)*	0.97 (0.94 to 1.00)	0.87 (0.78 to 0.97)*	0.81 (0.70 to 0.93)
SGLT2 inhibitor	0.73 (0.64 to 0.84)†	0.80 (0.70 to 0.91)*	0.41 (0.24 to 0.70)*	0.32 (0.16 to 0.65)
Other glucose-lowering Rx	0.97 (0.90 to 1.04)	0.95 (0.89 to 1.02)	0.99 (0.77 to 1.29)	1.05 (0.79 to 1.40)
All antihypertensive	0.97 (0.96 to 0.98)†	0.91 (0.90 to 0.92)†	0.92 (0.90 to 0.93)	0.84 (0.81 to 0.87)†
Diuretic-thiazide/thiazide- like	0.89 (0.87 to 0.92)†	0.83 (0.81 to 0.85)†	0.88 (0.84 to 0.93)	0.80 (0.72 to 0.89)†
Beta-blocker	1.07 (1.04 to 1.11)†	0.87 (0.85 to 0.90)†	0.99 (0.94 to 1.04)	0.93 (0.86 to 1.01)
DHP CCB	0.99 (0.96 to 1.02)	0.95 (0.92 to 0.97)†	0.95 (0.91 to 1.00)	0.85 (0.77 to 0.94)*
Non-DHP CCB	1.05 (1.02 to 1.09)*	1.30 (1.26 to 1.33)†	0.96 (0.90 to 1.03)	0.94 (0.83 to 1.07)
ACE inhibitor	0.98 (0.96 to 1.01)	0.84 (0.82 to 0.86)†	0.94 (0.89 to 0.98)	0.84 (0.77 to 0.92)†
ARB	0.86 (0.84 to 0.89)†	0.77 (0.75 to 0.80)†	0.80 (0.76 to 0.85)	0.71 (0.62 to 0.80)†
Statin	0.83 (0.80 to 0.85)†	0.65 (0.64 to 0.67)†	0.70 (0.67 to 0.74)	0.61 (0.56 to 0.66)†

Efficacy, renal safety and tolerability of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in elderly patients with type 2 diabetes: A real-world experience

Andrea Tumminia, Marco Graziano, Federica Vinciguerra, Andrea Lomonaco, Lucia Frittita*

Fig. 1. Longitudinal distributions and trends of HbA1c levels during 24months follow-up, by age class.Each box width is consistent with the number of observations at the corresponding timepoint. A horizontal dashed line represents the median HbA1c at baseline.

GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis

Thomas Karagiannis ^{a,*}, Apostolos Tsapas ^{a,b,c}, Eleni Athanasiadou ^a, Ioannis Avgerinos ^a, Aris Liakos ^a, David R. Matthews ^{c,d}, Eleni Bekiari ^{a,b}

Outcome (n events/N analysed)	Number of studies	P -interaction	Random Effects Model (Hazard Ratio)	Hazard ratio [95% CI]
Three-component MACE			I	
<65 years (1518/17239) >65 years (1793/15179)	4 4	0.38		0.94 [0.86; 1.03] 0.87 [0.74; 1.01]
All-cause mortality				
<65 years (650/13146) >65 years (912/11034)	2 2	0.95		0.80 [0.69; 0.94] 0.81 [0.53; 1.24]
Cardiovascular death				
<65 years (355/13146) >65 years (448/11034)	2 2	0.92		0.83 [0.65; 1.05] 0.81 [0.50; 1.31]
Stroke				
<65 years (463/13146) >65 years (396/11034)	3 3	0.02		1.18 [0.94; 1.48] 0.83 [0.69; 1.00]
Cardiovascular death or	HHF			
<65 years (859/16241) >65 years (1211/15185)	4 4	0.91		0.79 [0.69; 0.91] 0.78 [0.66; 0.93]
Heart failure hospitalisa	tion			
<65 years (306/13146) >65 years (413/11034)	2 2	0.06		0.83 [0.67; 1.04] 0.62 [0.51; 0.76]
Composite renal endpoi	nt			
<65 years (1019/15051) >65 years (844/12695)	4 4	0.67		0.62 [0.54; 0.70] 0.57 [0.43; 0.77]
			0.5 1 2	

Favors SGLT2 inhibitors Favors placebo

Clinical benefits of empagliflozin in very old patients with type 2 diabetes hospitalized for acute heart failure

Luis M. Pérez-Belmonte MD, PhD^{1,2,3,4} | Jaime Sanz-Cánovas MD¹ | Mercedes Millán-Gómez MD, PhD⁴ | Julio Osuna-Sánchez MD^{3,5} | Almudena López-Sampalo MD¹ | Michele Ricci MD¹ | Manuel Jiménez-Navarro MD, PhD⁶ | Maria D. López-Carmona MD, PhD¹ | María Rosa Bernal-López PhD^{1,7} | Miguel A. Barbancho MD, PhD³ | José P. Lara MD, PhD³ | Ricardo Gómez-Huelgas MD, PhD^{1,6}

FIGURE 1 Visual analogue scale dyspnea score (A), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels (B), diuretic response (C), and cumulative urine output (D), according to the ntihyperglycemic regimen. Differences between regimens in regard to visual analogue scale dyspnea score (A) and NT-proBNP levels (B) from baseline (at admission) to discharge, diuretic esponse (C) (defined as body weight loss (kilograms) per 40 mg furosemide or equivalent) at discharge, and cumulative urine output (D) during hospitalization are shown. Variables are shown s means ± standard deviation. Values were considered to be statistically significant when p < 0.05. NTproBNP, N-terminal pro-brain natriuretic peptide; VAS, visual analogue scale The role of sodium-glucose co-transporter-2 inhibitors in frail older adults with or without type 2 diabetes mellitus

Marc Evans¹, Angharad R. Morgan², Sarah Davies³, Hannah Beba⁴, William David Strain^{5,6}

Age and Ageing 2022; 51: 1–8

Efficacy, renal safety and tolerability of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in elderly patients with type 2 diabetes: A real-world experience

Andrea Tumminia, Marco Graziano, Federica Vinciguerra, Andrea Lomonaco, Lucia Frittita*

Discontinuation rate during follow-up

Causes of treatment discontinuation (N, %)	Overall patientsN = 364	65–69 yearsN = 184	≥70 yearsN = 180	Р
Overall causes	128 (35.2)	63 (34.2)	65 (36.1)	0.71
Genitourinary tract infections	60 (16.5)	29 (15.8)	31 (17.2)	0.69
Lack of efficacy/poor metabolic control	25 (6.9)	16 (8.7)	9 (5.0)	0.16
Poor patient compliance	32 (8.8)	18 (9.7)	14 (7.8)	0.49
Persistent (≥3 months) eGFR decline (≤45 ml/min)	8 (2.2)	0(0)	8 (4.4)	NA
Orthostatic hypotension	3 (0.8)	0(0)	3 (1.7)	NA

P-values <0.05 are statistically significant.

Abbreviations: eGFR, estimated Glomerular Filtration Rate; NA, not applicable.

Efficacy and safety of sodium-glucose co-transporter 2 inhibitors in the elderly *versus* non-elderly patients with type 2 diabetes mellitus: a meta-analysis

Yao Wang¹⁾*, Xian Shao²⁾* and Zewen Liu³⁾

Fig. 4 Forest plot of safety of SLGT2i in two age groups. (A) Hypoglycemia; (B) VD; (C) UTIs; (D) GIs; (E) RI; (F) Fracture.

Endocrine Journal 2022, 69 (6), 669-679

Safety and efficacy of empagliflozin in elderly Japanese patients with type 2 diabetes mellitus: A post hoc analysis of data from the SACRA study

Kenta Okada MD, PhD¹ | Satoshi Hoshide MD, PhD² | Mitsutoshi Kato MD, PhD³ Hiroshi Kanegae BSc² | Shun Ishibashi MD, PhD¹ | Kazuomi Kario MD, PhD² |

FIGURE1 Changes from baseline in nighttime, daytime, and 24-h systolic (SBP) (A), diastolic (DBP) (B) blood pressure, and pulse rate (C). Bars and values represent the changes (means and 95% CIs) from baseline, which were compared using mixed-effects models with repeated measures, adjusted for age and sex. The p-values quoted are for comparisons of the changes from baseline, and the between-group and between-age group differences

Association of Sodium-Glucose Cotransporter-2 Inhibitors With Fracture Risk in Older Adults With Type 2 Diabetes

Min Zhuo, MD, MPH; Chelsea E. Hawley, PharmD, MPH; Julie M. Paik, MD, MPH, ScD; Lily G. Bessette, BS; Deborah J. Wexler, MD; Dae H. Kim, MD, MPH, ScD; Angela Y. Tong, MS; Seoyoung C. Kim, MD, ScD; Elisabetta Patorno, MD, DrPH

cumulative incidence of fractures

0.020 DPP-4i GLP-1RA 0.016 Cumulative incidence SGLT-2i 0.012 0.008 0.004 2 3 0 1 Time to event, y No. at risk DPP-4i 45889 11945 3960 1140 GLP-1RA 45889 9352 2878 701 SGLT-2i 45889 10426 3394 938

The cumulative incidence of fractures within the 3 groups is shown in this Kaplan-Meier plot.We observed a total of 501 fracture events. There were 158 events in sodiumglucose otransporter–2 inhibitor (SGLT-2i) users (incidence ratio [IR], 4.69 fractures per 1000 personyears) compared with 195 in diopetidyl peptidase 4 inhibitor (DPP-4i) users (IR, 5.26 fractures per 00 personyears) and 148 in glucagon-like peptide 1 receptor agonist (GLP-1RA) users (IR, 4.71 fractures per 1000 personyears). SGLT-2i use was not with associated fracture compared with PP-4i (hazard ratio, 0.90; 95%CI, 0.73-1.11) or GLP-1RA use (hazard ratio, 1.00; 95%CI, 0.80-1.25).

JAMA Network Open. 2021;4(10):e2130762

SGLT2 Inhibitors and Safety in Older Patients

Rena Pollack, MD^{a,b}, Avivit Cahn, MD^{a,c,*}

SAFE PRESCRIPTION OF SGLT-2 INHIBITORS IN THE ELDERLY

Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes

Amy Groenewegen^{1*}⁽⁶⁾, Victor W. Zwartkruis², Betül Cekic¹, Rudolf. A. de Boer², Michiel Rienstra², Arno W. Hoes³, Frans H. Rutten¹ and Monika Hollander¹

Fig. 3 Incidence of cardiovascular diseases per 1000 person-years, for patients with and without diabetes, per age category

Sodium-Glucose Cotransporter-2 Inhibition Benefits in Cardiorenal Risk in Men and Women

Jacob E. Pruett,¹ Seth T. Lirette,² Damian G. Romero,^{1,3,4,5} and Licy L. Yanes Cardozo^{1,3,4,5,6}

p-value for overall sex differences = 0.673

Valutazione della Qualità dell'assistenza al diabete in Italia in base al genere

> Differenze di Genere nel Diabete di tipo 2

Distribuzione dei pazienti con DM2 per classe di farmaco anti-iperglicemizzante (%)

Trattamento	Donne	Uomini
Metformina	70,0	71,7
Sulfanilurea	14,6	13,5
Glinide	2,8	2,7
Glitazone	3,7	5,1
Acarbose	2,1	1,9
DPPIVi	22,2	21,6
GLP1-RA	10,7	11,1
SGLT2i	9,8	13,8
Insulina	33,8	32,0
Insulina basale	29,0	27,5
Insulina rapida	20,3	18,3

Gender disparities in time-to-initiation of cardioprotective glucose-lowering drugs in patients with type 2 diabetes and cardiovascular disease: a Danish nationwide cohort study

Kristian Løkke Funck¹, Lasse Bjerg^{1,2}, Anders Aasted Isaksen², Annelli Sandbæk^{1,2} and Erik Lerkevang Grove^{3,4*}

Fig. 1 Time to initiation of cardioprotective glucose-lowering drugs in male and female patients with a first dual diagnosis of type 2 diabetes and cardiovascular disease. A Male and female patients with a new-onset dual diagnosis of type 2 diabetes and any cardiovascular disease. B Male and female patients with new-onset T2DM and schemic heart disease. C Male and female patients with new-onset T2DM and stroke. D Male and female patients with new-onset T2DM and peripheral artery disease. E Male and female a tients with new-onset T2DM and heart failure. Prevalent users of cardioprotective GLDs are included in graph at time = 0. Red = women, blue = men. GLP-1RA glucagon-like peptide-1 eceptor agonist; SGLT2 sodium-glucose co-transporter-2

Cardiovascular Diabetology (2022) 21:279

Time since dualdiagnosis of cardiovascular disease and Type 2 diabetes (YEARS)

% initating cardioprotecting glucose lowering drugs

Conclusioni

Lo scompenso cardiaco è una complicanza potenziale frequente, spesso misconosciuta, del diabete mellito.

La maggior parte di farmaci ipoglicemizzanti hanno dati limitati o (se valutati nei CVOT) si sono dimostrati, nella migliore delle ipotesi, neutri in termini di ricovero per scompenso cardiaco o, come in alcuni casi, possono aumentare il rischio di insufficienza cardiaca.

Su tali basi l'opportunità dell'effetto degli SGLT-2 inibitori nella prevenzione e trattamento dello scompendo cardiaco rappresenta oggi un caposaldo della strategia terapeutica della persona con diabete mellito.