

Società Italiana per l'Ipertensione Arteriosa Lega Italiana contro l'Ipertensione Arteriosa

CONGRESSO INTERREGIONALE SIIA

PIEMONTE - LIGURIA - VALLE D'AOSTA

Aula Magna Dogliotti - Presidio Molinette
TORINO
10 OTTOBRE 2020

COMITATO SCIENTIFICO

Aldo Pende (Genova) Claudio Pascale (Torino) Antonio Ferrero (Torino) Franco Rabbia (Torino)

Iperuricemia e rischio cardio-metabolico: nuove strategie di trattamento

Giovambattista Desideri UO Geriatria e Lungodegenza Dipartimento MESVA Università degli Studi di L'Aquila

Gout: why an ancient disease is a modern day problem?

Hyperuricemia and Cardiorenal Metabolic Syndrome

Gout: The Fashionable Disease

2018 ESC/ESH Guidelines for the management of arterial hypertension

The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH)

URIC ACID

AS A FACTOR IN THE CAUSATION OF DISEASE.

A CONTRIBUTION TO THE

PATHOLOGY OF HIGH ARTERIAL TENSION, HEADACHE, EPILEPSY, MENTAL DEPRESSION, GOUT, RHEUMATISM, DIABETES, BRIGHT'S DISEASE, AND OTHER DISORDERS.

BY ALEXANDER HAIG, M.A., M.D.Oxon., F.R.C.P.

FIG. 14 .- HIGH TENSION PULSE OF A URIC ACID HEADACHE. RATE 57.

Routine taboratory tests	
Haemoglobin and/or haemat	tocrit
Fasting blood glucose and gly	ycated HbA _{1c}
Blood lipids: total cholesterc cholesterol	ol, LDL cholesterol, HDL
Blood triglycerides	
Blood potassium and sodium	1
Blood uric acid	
Blood creatinine and eGFR	
Blood liver function tests	
Urine analysis: microscopic e stick test or, ideally, albumin	examination; urinary protein by dip- creatinine ratio
12-lead ECG	

Clinical Practice Guidelines

2020 International Society of Hypertension Global Hypertension Practice Guidelines

Thomas Unger, Claudio Borghi, Fadi Charchar, Nadia A. Khan, Neil R. Poulter, Dorairaj Prabhakaran, Agustin Ramirez, Markus Schlaich, George S. Stergiou, Maciej Tomaszewski, Richard D. Wainford, Bryan Williams, Aletta E. Schutte

URIC ACID

A FACTOR IN THE CAUSATION OF DISEASE.

A CONTRIBUTION TO THE

PATHOLOGY OF HIGH ARTERIAL TENSION, HEADACHE, EPILEPSY, MENTAL DEPRESSION, GOUT, RHEUMATISM, DIABETES, BRIGHT'S DISEASE, AND OTHER DISORDERS.

ALEXANDER HAIG, M.A., M.D.Oxon., F.R.C.P.

FIG. 14 .- HIGH TENSION PULSE OF A URIC ACID HEADACHE. RATE 57.

- **Carotid ultrasound:** Plaques (atherosclerosis), stenosis.
- **Kidneys/renal artery and adrenal imaging:** Ultrasound/renal artery Duplex; CT-/MR-angiography: renal parenchymal disease, renal artery stenosis, adrenal lesions, other abdominal pathology.
- **Fundoscopy:** Retinal changes, hemorrhages, papilledema, tortuosity, nipping.
- Brain CT/MRI: Ischemic or hemorrhagic brain injury due to hypertension.

Functional Tests and Additional Laboratory Investigations

- **Ankle-brachial index:** Peripheral (lower extremity) artery disease.
- Further testing for secondary hypertension if suspected: Aldosterone-renin ratio, plasma free metanephrines, late-night salivary cortisol or other screening tests for cortisol excess.
- Urinary albumin/creatinine ratio
- Serum uric acid (s-UA) levels
- Liver function tests

Gout is associated with increased risk for cardiovascular events

Gout and Risk of Myocardial Infarction¹

Gout and Mortality for CHD²

¹Liu SC et al. PLoS One. 2015 Jul 31;10(7):e0134088. d ²Clarson LE et al. European Journal of Preventive Cardiology 2015, Vol. 22(3) 335-343

Subclinical Gout and Cardiovascular Disease

Silent MSU Crystal Deposits Are Associated With Severe Coronary Calcification in Asymptomatic Hyperuricemia (SUA >7 mg/dL)

SUA, oxidative stress and CV disease: a comprehensive hypothesis

Borghi C, Desideri G, Hypertension 2016

Uric Acid – Key Ingredient in the Recipe for Cardiorenal Metabolic Syndrome

Chaudhary K et al Cardiorenal Med 2013;3:208-220

Serum Uric Acid Levels Predict New-Onset Type 2 Diabetes in Hospitalized Patients With Primary Hypertension: The MAGIC Study

Viazzi F et al. Diabetes Care. 2011; 34:126-8

Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism

Mazzali M et al. Hypertension 2001, 38:1101-1106

Serum uric acid as a predictor of hypertension

Study	Population	Follow-up, y	Independent	Year
Israeli Heart Study	10 000 male participants	5	Not done	1972
Kaiser Permanente	2062 subjects	6	Yes	1990
University of Utah	1482 adults	7	Yes	1991
Olivetti Heart Study	619 male participants	12	Yes	1994
CARDIA study	5115 adults	10	Yes	1999
Osaka Health Survey	6356 males	10	Yes	2001
Hawaii-Los Angeles-Hiroshima	140 male participants	15	Yes	2001
Osaka Factory Study	433 male participants	5	Yes	2003
Osaka Health Survey	2310 male participants	6	Yes	2003
Okinawa	4489 adults	13	Yes	2004
Bogalusa Heart	679 children	11	Yes	2005
Framingham	3329 adults	4	Yes	2005
Normative Aging Study	2062 male participants	21	Yes	2006
ARIC	9104 adults	9	Yes	2006
Beaver Dam	2520 adults	10	Yes	2006
MRFIT	3073 men	6	Yes	2007
Health Professional Follow-up	750 men	18	No	2007
Nurses Health Study	1500 women	5	Yes	2009
China	7220 adults	4	Yes	2009
US	141 children	3	Yes	2009
Italy	1410 young adults	20	Yes	2010
GOCADAN	1078 adults	6	Yes	2012
NHANES Continuous	6036 adolescents	8	Yes	2012
Cardia	4752 adults	20	Men	2012

Serum uric acid as a predictor of hypertension

	Study	Рори	lation F	follow-up, y	Independent	Year
Israe	eli Heart Study	10 000 male	e participants	5	Not done	1972
Kaiser Permanente		2062 subject	ts	6	Yes	1990
Univ	ersity of Utah	1482 adults		7	Yes	1991
OI C/	Author	Patients (n)	Cut-off point	Follow-up	Adjusted risk ratio	
Os Ha	Krishnan <i>et al.</i> , 2007 [24]	3073 Normotensive men, age 35–57 yrs, nondiabetic, without metabolic syndrome	>7.0 mg/dl	6 years	HR 1.81 (95% Cl, 1.59–2.07)	
0	Grayson et al., 2011 [21]	55 607 Meta-analysis	1 SD higher serum uric acid	3 to 21.5 years	RR 1.13 (95% CI, 1.06-1.20)	
0	Perlstein et al., 2006 [25]	2062 Healthy men	>7.0 mg/dl	21.5 years	RR 1.1 (95% CI, 1.06-1.15)	
	Forman et al., 2009 [26]	1496 Healthy women aged 32–52 yrs	>4.6 mg/dl	8 years	OR 1.89 (95% CI, 1.26–2.82).	
Fr	Mellen <i>et al.</i> , 2006 [27]	9104 Healthy, mean (range) age 53.3 (45–64) yrs	>7.0 mg/dl	9 years	HR 1.1 (95% CI, 1.04–1.15)	· · · · · · · · · · · · · · · · · · ·
No	Zhang et al., 2009 [28]	7220 General population	5.7 (men)	4 years	RR 1.55 (95% CI, 1.10-2.19) fo	or men
ΔF			4.8 (women)		RR 1.91 (95% CI, 1.12-3.25) fc	or women
	Shankar et al., 2006 [29]	2520 General population	6.6 mg/dl	10 years	RR 1.65 (95% CI, 1.41-1.93)	
Dt	Sundström et al., 2005 [30]	3329 General population	1 SD increase in serum uric acid	4 years	OR 1.17 (95% CI, 1.02-1.33)	1
M He	Bombelli <i>et al.</i> , 2014 [22]	2051 General population	1-mg/dl increase in serum uric a	acid 16 years	HR 1.34 (95% CI 1.06–1.70) home hypertension	
Nu					HR 1.29 (95% CI 1.05–1,70) ambulatory hypertension	= 1
Clim	a	1220 auuits		4	100	2003
US		141 children	1	3	Yes	2009
Italy		1410 young	adults	20	Yes	2010
GOC	ADAN	1078 adults		6	Yes	2012
NHA	NES Continuous	6036 adoles	cents	8	Yes	2012
Card	lia	4752 adults		20	Men	2012

Relation Between Serum Uric Acid and Risk of CVD in Essential Hypertension: The PIUMA Study

1720 subjects with EH, untreated, screened for absence of cardiovascular disease, renal disease, cancer, and other important disease. Follow-up up to 12 years (mean, 4.0) were followed

High Blood Press Cardiovasc Prev https://doi.org/10.1007/s40292-018-0250-7

ORIGINAL ARTICLE

Exploration into Uric and Cardiovascular Disease: Uric Acid Right for heArt Health (URRAH) Project, A Study Protocol for a Retrospective Observational Study

Giovambattista Desideri¹ · Agostino Virdis²¹ · Edoardo Casiglia³ · Claudio Borghi⁴ · On behalf of the Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension

- ♦ Casiglia E, et al. J Hypertens. 2020;38(3):412-419
- ♦ Virdis A, et al Hypertension. 2020;75(2):302-308.
- ♦ Maloberti A, et al. High Blood Press Cardiovasc Prev. 2020 Apr;27(2): 121-128.
- ♦ Muiesan ML, et al . J Hypertens. 2020 Jul 15. doi: 10.1097/HJH. 00000000002589..

Identification of the uric acid thresholds predicting an increased total and cardiovascular mortality over 20 years

Kaplan-Meier survival estimates according to the identified thresholds

Serum uric acid and **fatal myocardial infarction**: detection of prognostic cutoff values:The URRAH (Uric Acid Right for Heart Health) study

Casiglia E et al. J Hypertension 2019

Relationship between serum uric acid levels and annual incidence of gout

Bohle V et al. Arthritis Rheum 2010;62:1069-1076

The pH-solubility relationships of uric acid and MSUM

SUA, oxidative stress and CV disease: a comprehensive hypothesis Borghi C, Desideri G, Hypertension 2016 Serum Uric Acid Intracellular Uric Gout Acid HTN, CKD i.c. oxidative stress (eNOS) CV disease mitochondrial dysfunction **RAAS** activation High TG,MS,TOD

Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases Through a Mendelian Randomization Study

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 67, NO. 4, 2016 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.10.086

Urate Genetic Score: Association of Genetically Raised Urate With Cardiometabolic Outcomes

Outcome		OR	95% CI	p value
Type 2 Diabetes	*	0.95	(0.86, 1.05)	0.28
Coronary Heart Disease	+	1.02	(0,92, 1.12)	0.73
Ischemic Stroke	+	0.99	(0.88, 1.12)	0.93
Heart Failure	-10-	1.07	(0.88, 1.30)	0.51
Gout	-	- 5.84	(4.56, 7.49)	4.2E-44
0.5	1.0 5.0	0 10.0		
OP per SD increase in	Sorum Urato Confor	red by Constic Scor	0	

Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases Through a Mendelian Randomization Study

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL: 67, NO: 4, 2016 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc,2015.10.086

Urate Genetic Score: Association of Genetically Raised Urate With Cardiometabolic Outcomes

Keenan T et al. J Am Coll Cardiol. 2016 Feb 2;67(4):407-16.

Searching for the righ relationship between uric acid and CV diseases

So A et al. J Clin Invest. 2010;120(6):1791–1799. Reginato AM et al. Nat Rev Rheumatol. 2012 October ; 8(10): 610–621 Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme

Battelli MG et al. Biochimica et Biophysica Acta 1842 (2014) 1502–1517

Xanthine oxidase gene variants and their association with blood pressure and incident hypertension

Variation in uric acid production, as captured by genetic variation in XOR, might be a predictor of changes in blood pressure and in the risk of hypertension

Inibizione della XO e protezione vascolare

Nomura J et al Sci Rep. 2014 Apr 1;4:4554. doi:10.1038/srep04554

A Role for Uric Acid in the Progression of Renal Disease

Association of **high** plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure

Otaki Y et al. International Journal of Cardiology 228 (2017) 151–157

Effects of Xanthine Oxidase Inhibition in Hyperuricemic Heart Failure Patients

The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study

Association of **low** plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure

Otaki Y et al. International Journal of Cardiology 228 (2017) 151–157

Relationship between plasma xanthine oxidoreductase activity and LVEF among cardiac patients

Fujimura Y et al. PLoS ONE 12(8): e0182699.

Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure

Otaki Y et al. International Journal of Cardiology 228 (2017) 151–157

Effects of Xanthine Oxidase Inhibition in Hyperuricemic Heart Failure Patients

The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study

Givertz MM et al. Circulation. 2015;131:1763-1

Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout

White WB et al. N Engl J Med. 2018 Mar 12.

Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout

White WB et al. N Engl J Med. 2018 Mar 12.

Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout

Primary end-point: a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or unstable angina with urgent revascularization

A Primary End Point

Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion (FREED) StuDy

Kojima S et al. European Heart Journal (2019) 00, 1–10

Xanthine oxidase inhibitors for **preventio**n of cardiovascular events: a systematic review and meta-analysis of RCT

Daily dose of allopurinol (mg)

Bredemeier et al. BMC Cardiovascular Disorders (2018) 18:24

Uric Acid excretion/production balance

Il mondo sommerso dell'iperuricemia con e senza depositi di urato

Ultrasonographic assessment of joint pathology in type 2 diabetes and hyperuricemia (60%) or gout (40%): The Fremantle Diabetes Study Phase II

- A subset of 101 participants (mean age 70.4 years, 59.8% males, median diabetes duration 14.6 years) with hyperuricemia (fasting serum uric acid ≥0.42mmol/L),
- ♦ Joint inflammation and/or urate deposition were present in the majority of community-based patients with type 2 diabetes and hyperuricemia regardless of whether there was a history of gout.

Keen HI et al. Journal of Diabetes and Its Complications 32 (2018) 400-405

Serum Uric Acid Target < 6 mg/dL

CrossMark

Hyperuricemia is associated with increased hospitalization risk and healthcare costs: Evidence from an administrative database in Italy

L. Degli Esposti ^{a,1}, G. Desideri ^{b,*,1}, S. Saragoni ^a, S. Buda ^a, R. Pontremoli ^c, C. Borghi ^d

Hyperuricemia starts at 360 micromoles (6 mg/dL)

Journal of Hypertension 2015, 33:1729–1741

Serum uric acid and the risk of cardiovascular and renal disease

Claudio Borghi^a, Enrico Agabiti Rosei^b, Thomas Bardin^{c,d,e}, Jesse Dawson^f, Anna Dominiczak^f, Jan T. Kielstein^g, Athanasios J. Manolis^h, Fernando Perez-Ruizⁱ, and Giuseppe Mancia^j

European Review for Medical and Pharmacological Sciences

2014; 18: 1295-1306

Is it time to revise the normal range of serum uric acid levels?

G. DESIDERI¹, G. CASTALDO^{2,3}, A. LOMBARDI⁴, M. MUSSAP⁵, A. TESTA⁶, R. PONTREMOLI⁷, L. PUNZI⁸, C. BORGHI⁹

XO-inhibition: intervention area

XO-inhibition: intervention area

Conclusions

Pathophysiological mechanisms linking hyperuricemia with and/or withouts deposits to CVD (likely) include

- ♦ UA induced vascular dysfunction
- ♦ UA induced metabolic derangement
- XO overactivity (genetic, induced) or "overfeeding" (food, fructose, purines)
- ♦ UA deposits induced "microinflammation"

Mechanistic evidence identifies the selective XO-inhibition as the most effective strategy for the management of hyperuricemia in addition and beyond the effects on SUA