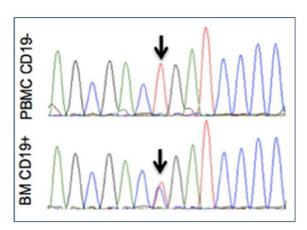
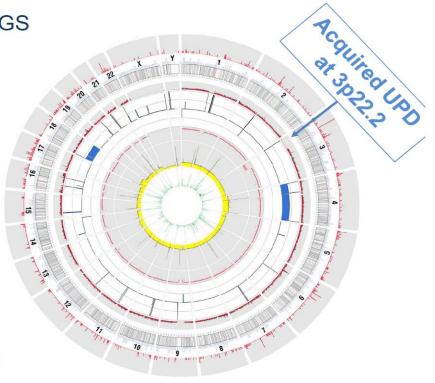

## INCONTRO DI AGGIORNAMENTO SUI DISORDINI LINFOPROLIFERATIVI E SUI PROTOCOLLI DELLA FONDAZIONE ITALIANA LINFOMI



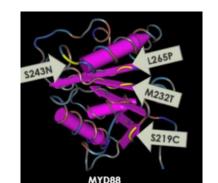
## Malattia di Waldenstrom Diagnosi e nuove terapie


Alessandra Tedeschi
ASST Grande Ospedale Metropolitano Niguarda






## **MYD88 L265P Somatic Mutation in WM**


C > G at position 38186241 at 3p22.2 in 91% of WM Patients by WGS



- MYD88<sup>L265P</sup> confirmed by AS-PCR in 93-97% WM pts;
- Usually heterozygous;
- 10% WM patients homozygous due to acquired UPD.
- MYD88 homozygosity increases with time.



Treon et al, NEJM 367:826, 2012



1% of Pts with MYD88 mutations L265P WT

## MYD88 L265P in WM/IGM MGUS

|              | METHOD       | TISSUE               | WM   | IGM MGUS |
|--------------|--------------|----------------------|------|----------|
| Treon        | WGS/Sanger   | BM CD19 <sup>+</sup> | 91%  | 10%      |
| Xu           | AS-PCR       | BM CD19 <sup>+</sup> | 93%  | 54%      |
| Gachard      | PCR          | вм                   | 70%  |          |
| Varettoni    | AS-PCR       | BM CD19+             | 100% | 47%      |
| Landgren     | Sanger       | ВМ                   |      | 54%      |
| Jiminez      | AS-PCR       | BM                   | 86%  | 87%      |
| Poulain      | PCR          | BM CD19 <sup>+</sup> | 80%  |          |
| Argentou     | PCR-RFLP     | ВМ                   | 92%  | 1/1 MGUS |
| Willenbacher | Sanger       | BM                   | 86%  |          |
| Mori         | AS-PCR/BSiE1 | ВМ                   | 80%  |          |
| Ondrejka     | AS-PCR       | BM                   | 100% |          |
| Ansell       | WES/AS-PCR   | BM CD19+             | 97%  |          |
| Patkar       | AS-PCR       | ВМ                   | 85%  |          |

#### >50 CONFIRMATIONAL STUDIES PUBLISHED

## Plenary Paper

#### LYMPHOID NEOPLASIA

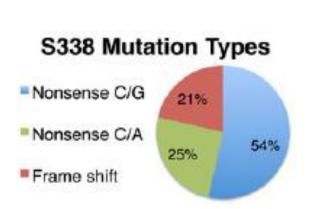
The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis

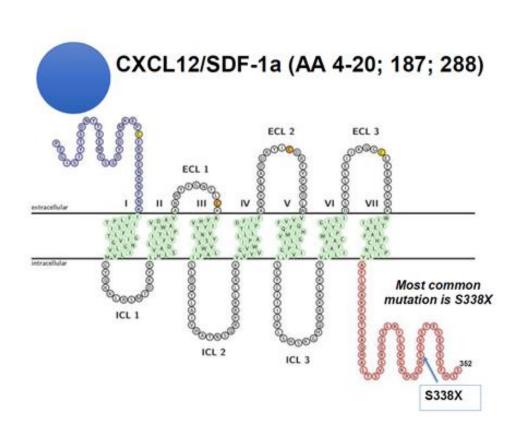
Zachary R. Hunter, 12 Lian Xu, 1 Guang Yang, 1 Yangaheng Zhou, 1 Xia Liu, 1 Yang Cao, 1 Robert J. Manning, 1 Christina Tripsas, 1 Christopher J. Patterson, 1 Patricia Sheehy, 1 and Steven P. Treon 13

<sup>1</sup>Bing Center for Waldenström's Mecroglobulinema, Dane-Farber Cancer Institute, Boston, MA: <sup>9</sup>Department of Pathology and Laboratory Medicine, Boston, University School of Graduate Medical Sciences, Boston, MA: and <sup>9</sup>Harvard Medical School, Boston, MA

#### **Key Points**

- Highly recurring mutations are present in WM, including MYD88 L265P, warts, hypogammaglobulinemia, infection, and myelokathexissyndrome—like mutations in CXCR4, and ARID1A.
- Small, previously undetected CNAs affecting B-cell regulatory genes are highly prevalent in WM.


The genetic basis for Waldenström macroglobulinemia (WM) remains to be clarified. Although 6q losses are commonly present, recurring gene losses in this region remain to be defined. We therefore performed whole genome sequencing (WGS) in 30 WM patients, which included germline/tumor sequencing for 10 patients. Validated somatic mutations occurring in>10% of patients included MYD88, CXCR4, and ARID1A that were present in 90%, 27%, and 17% of patients, respectively, and included the activating mutation L265P in MYD88 and warts, hypogammaglobulinemia, infection, and myelokathexis-syndrome-like mutations in CXCR4 that previously have only been described in the germline. WGS also delineated copy number alterations (CNAs) and structural variants in the 10 paired patients. The CXCR4 and CNA findings were validated in independent expansion cohorts of 147 and 30 WM patients, respectively. Validated gene losses due to CNAs involved PRDM2 (93%), BTG1 (87%), HIVEP2 (77%), MKLN1 (77%), PLEKHG1 (70%), L VN (60%), ARID18 (50%), and FOXP1 (37%). Losses in PLEKHG1, HIVEP2, ARID18, and BCLAF1 constituted the most common deletions within chromosome 6. Although no recurrent translocations were


observed, in 2 patients deletions in 6q corresponded with translocation events. These studies evidence highly recurring somatic events, and provide a genomic basis for understanding the pathogenesis of WM. (Blood. 2014;123(11):1637-1646)

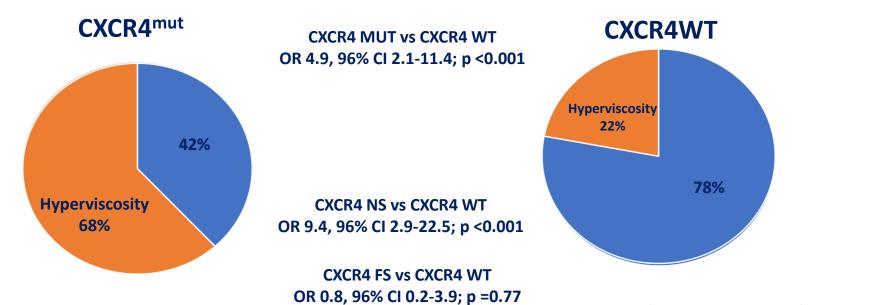
30-40% of WM patients

#### WHIM-like CXCR4 mutations in WM

- 25-40% of WM pts
- Occur in the C-terminal domain
- Nonsense and frameshift mutations
- Frequent in MYD88 L265P,
- rare (~9%) in MYD88 WT
- Usually subclonal
- Multiple CXCR4 mutations can be present within an individual patient

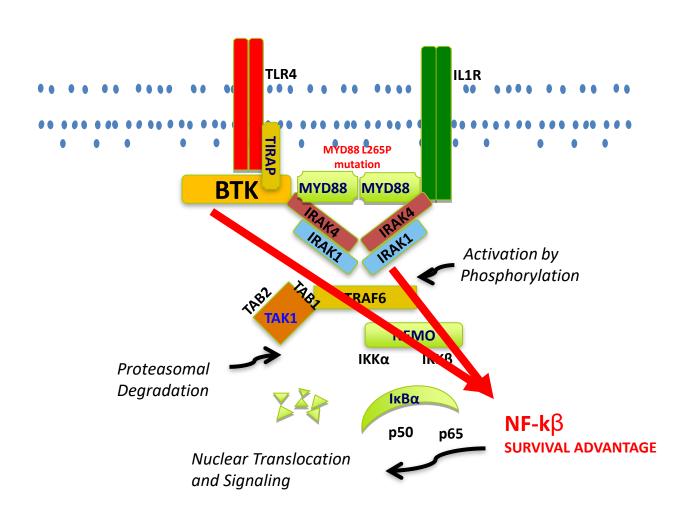




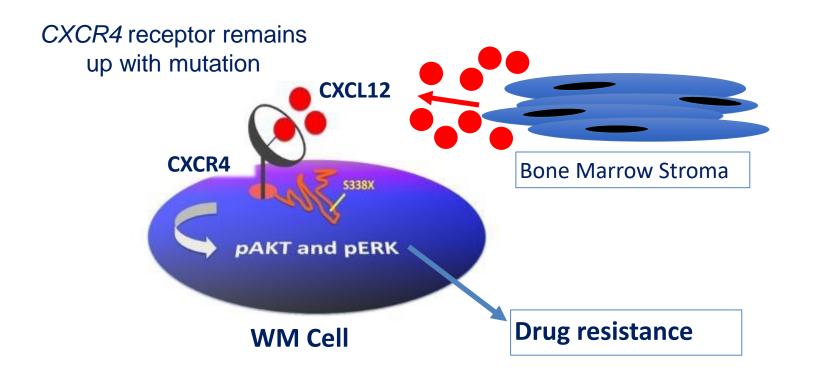

Hunter et al. Blood 2013 Roccaro et al. Blood 2014 Poulain et al. Blood 2016 Xu et al. BJH 2016 Varettoni et al. Haematologica 2016

## **CXCR4** mutations clinical impact

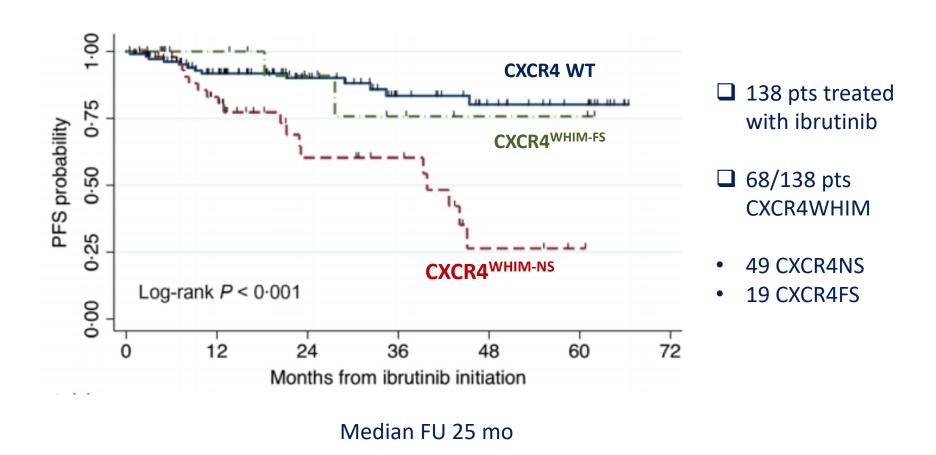
MYD88


CXCR4

| 88 | WT                                                                                             |                                                     | L265P                                                                                                       |                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1  | WT                                                                                             |                                                     | WHIM                                                                                                        | WHIM-NS                                                                                                                            |
|    | MYD88 <sup>WT</sup> CXCR4 <sup>WT</sup> ~10% pts Poor prognosis/OS Low serum IgM LowBM involv. | MYD88 <sup>L265P</sup> CXCR4 <sup>WT</sup> ~60% pts | MYD88 <sup>L265P</sup> CXCR4 <sup>WHIM</sup> -FS ~30% pts Low adenopathy No influence on ibrutinib response | MYD88 <sup>L265P</sup> CXCR4 <sup>WHIM-NS</sup> ~50% pts of CXCR4 <sup>WHIM</sup> High BM High IgM Hyperviscosity More symptomatic |




Treon SP et al 2013, Gustine et al 2017


### **TOLL RECEPTOR/ IL1R SIGNALING PATHWAY**



## CXCR4 mutations permits ongoing pro-survival signaling by CXCL12, the ligand for CXCR4 Receptor



## **CXCR4** mutations: clinical impact

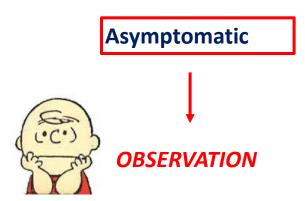


No difference in Major response rate and PFS in CXCR4WHIM-FS vs CXCR4 WT

## Clinicopathological definition of WM

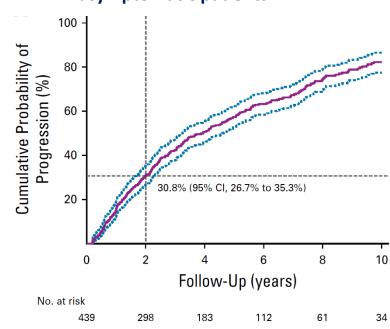
infiltration of lymphoplasmacytic cells in the bone marrow

(lymphoplasmacytic lymphoma using REAL/WHO criteria)

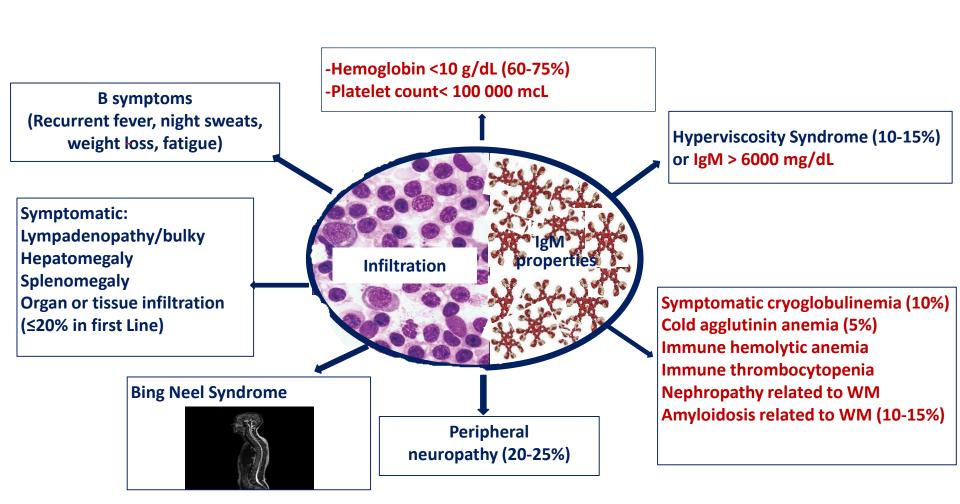

presence of a monoclonal IgM protein, irrespective of serum level

#### Bone marrow morphology:

- intertrabecular pattern
- with or without nodules
- with or without paratrabecular and diffuse infiltrates
- Dutcher bodies: acid–Schiff+ intranuclear pseudoinclusions
- Mast cells: support the growth of the LPL
- Immunoglobulin deposition, amyloid, or crystal-storing histiocytosis
- Specific immunophenotype:
  - slgM+, CD19+, CD20+, CD22+, CD79+, FMC7+, CD52+,
  - CD5±, CD10-, CD23-
  - CD25+, CD27+, CD103-, CD138-
  - plasmocytoid: clgM, CD19+ CD45+ abnormal exprssion of CD138+ PAX5

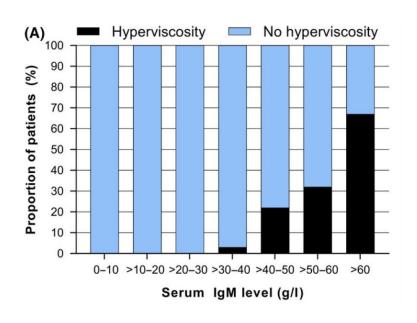


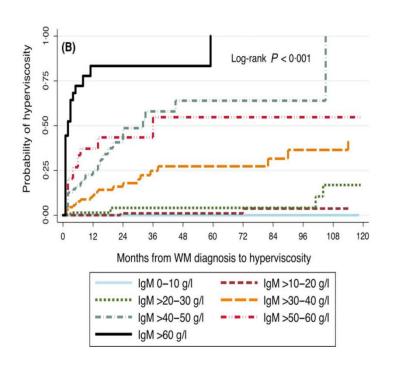

## **Management of WM patients**




- No OS benefit to treat asymptomatic pts
- Resistance development
- Not all pts will progress to symptomatic disease

## Cumulative probability of progression among asymptomatic patients





## Indications for therapy initiation

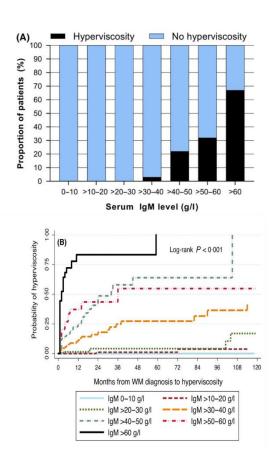


## **bjh** Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia

113 pts developed hyperviscosity/825 pts (14%)

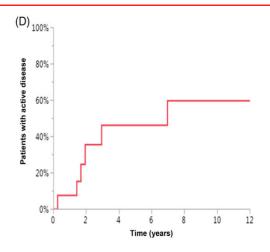





Reasonable treatment start when IgM level > 6000 mg/dL

### bjh

AJH


Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia

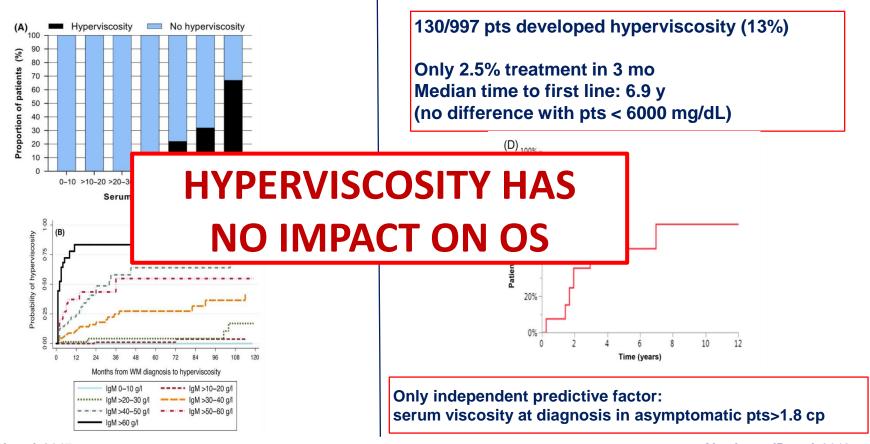
Predictors of symptomatic hyperviscosity in Waldenström macroglobulinemia



130/997 pts developed hyperviscosity (13%)

Only 2.5% treatment in 3 mo Median time to first line: 6.9 y (no difference with pts < 6000 mg/dL)




Only independent predictive factor: serum viscosity at diagnosis in asymptomatic pts>1.8 cp

### bjh



Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia

Predictors of symptomatic hyperviscosity in Waldenström macroglobulinemia



Gustine JN et al, 2017 Abeykoon JP et al, 2018

## **Treatment standard? A Challenge.....**

### Why a challenge?

- Few randomized trials
- Phase 2 studies with low number of patients
- Lack of prolonged outcomes
- Treatment landscapes and data on treatment choices and their outcome in patients outside clinical trials are lacking

## Treatment options in WM

#### **Proteasome Inhibitors:**

(Bortezomib , carfilzomib , ixazomib , oprozomib)

**IMiDs** 

**Bendamustine** 

**Ibrutinib** 

**Acalabrutinib** 

mTOR inhibitors

Venetoclax etc

Rituximab

**Nucleoside** analogues

**Akylating agents** 

Rituximab

Nucleoside analogues

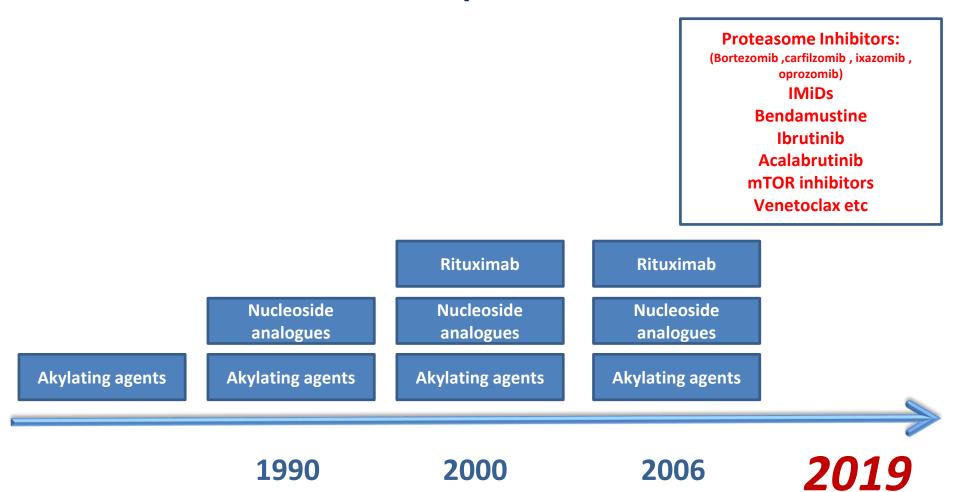
**Akylating agents** 

**Akylating agents** 

**Akylating agents** 

**Nucleoside** 

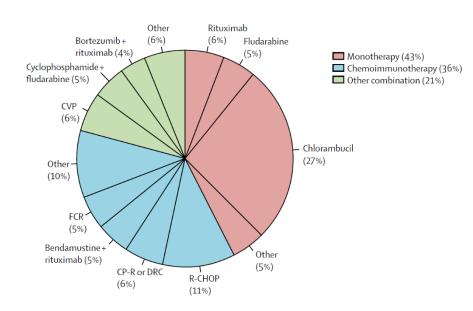
analogues


1990

2000

2006

2019


## Treatment options in WM



FIRST LINE: RITUXIMAB COMBINATION TREATMENT

# Treatment and Outcome Patterns in Patients With Relapsed Waldenström Macroglobulinemia From a Large Observational Pan-European Data Platform 2000-2014





#### Front-line use by treatment centre type and age

|                    | Overall<br>(n=454) | Academic<br>institution<br>(n=306) | Community<br>institution<br>(n=148) | Age <65 years<br>(n=223) | Age ≥65 years<br>(n=231) |
|--------------------|--------------------|------------------------------------|-------------------------------------|--------------------------|--------------------------|
| Monotherapy        | 193 (43%)          | 114 (37%)                          | 79 (53%)                            | 79 (35%)                 | 114 (49%)                |
| Chemoimmunotherapy | 164 (36%)          | 135 (44%)                          | 29 (20%)                            | 90 (40%)                 | 74 (32%)                 |
| Other combination  | 95 (21%)           | 55 (18%)                           | 40 (27%)                            | 52 (23%)                 | 43 (19%)                 |

## **Treatment choice**

#### **>** Patient

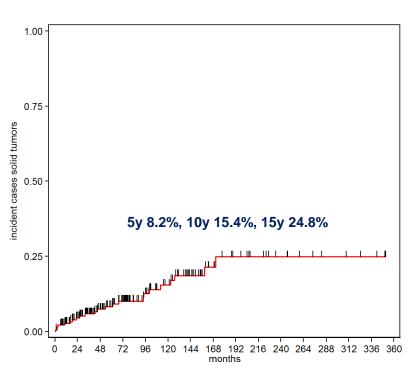
- Age
- PS
- Comorbidities

#### **➤ Disease Presentation**

- Need for rapid disease control
- Cytopenia
- Neuropathy
- Bulky disease/extramedullary disease
- Cryoglobulinemmia/Cold agglutinine

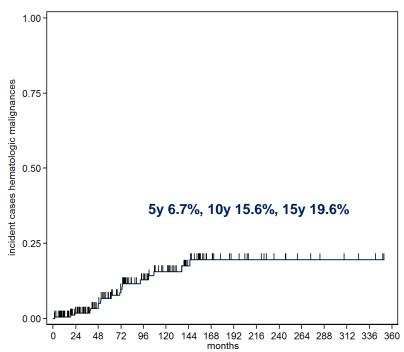
#### > Therapy

#### **Treatment Goals:**


- Time to IgM decrease
- -Quality of response
- -PFS, OS

#### **Treatment Concerns**

- Toxicity (myelo/immuno-suppression, etc)
- -Secondary Malignancies (MDS/AML-DLBCL-solid tumors)


### **Cumulative incidence of SM after treatment**

#### **Solid Tumors**



SN: 0.0013 pt/m (CI 95% 0.0009-0.0021)

### **Haematological Malignancies**



Hematological: 0.0011 pt/m (CI 95% 0.0007-0.0013)

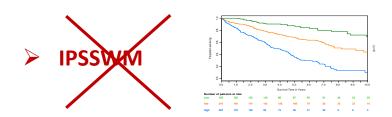
## **Treatment choice**

#### **≻**Patient

- Age
- PS
- Comorbidities

#### **➤ Disease Presentation**

- Need for rapid disease control
- Cytopenia
- Neuropathy
- Bulky disease/extramedullary disease
- Cryoglobulinemmia/Cold agglutinine

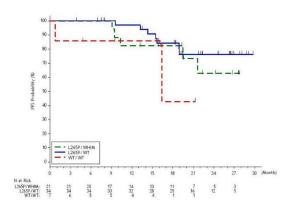

### > Therapy

#### **Treatment Goals:**

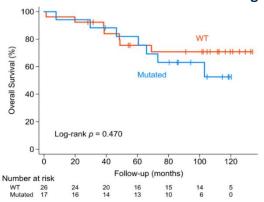
- Time to IgM decrease
- -Quality of response
- -PFS, OS

#### **Treatment Concerns**

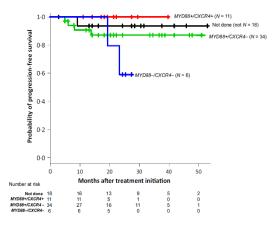
Toxicity(myelo/immuno-suppression, etc)-Secondary Malignancies(MDS/AML-DLBCL-solid tumors)



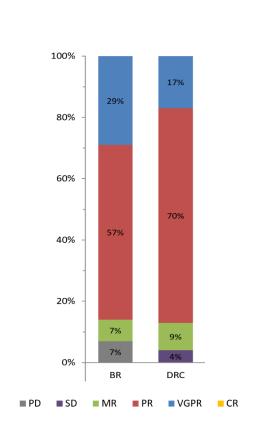

MYD88 & CXCR4 status ?

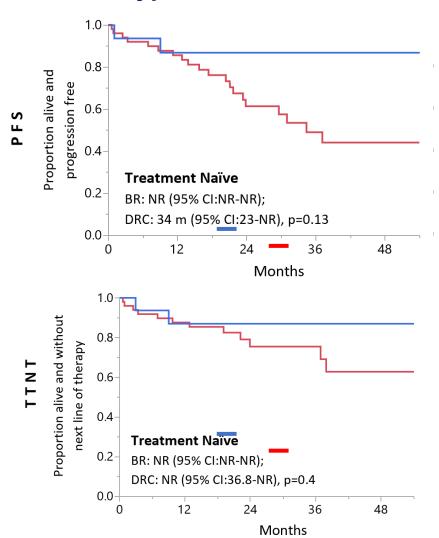

## PFS according to MYD88 & CXCR4 mutation status

#### Ibrutinib Monotherapy R/R

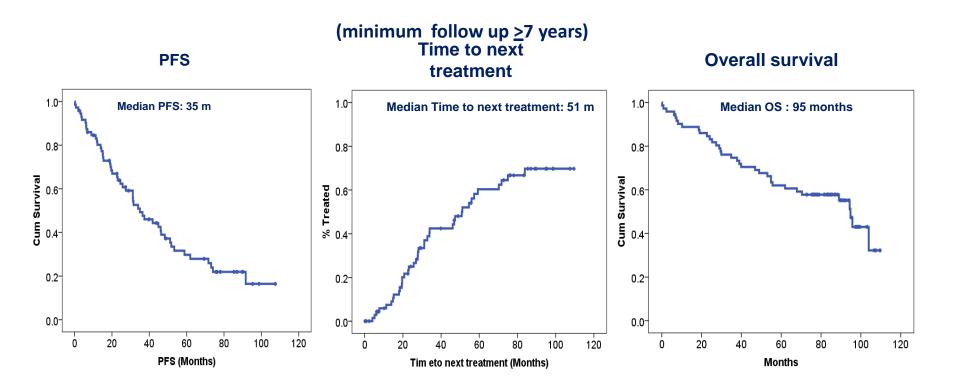

|            | MYD88 <sup>L265P</sup><br>CXCR4 <sup>WT</sup> | MYD88 <sup>L26</sup><br>CXCR4 <sup>WHI</sup> | MYD88W<br>CXCR4W | p-<br>value |
|------------|-----------------------------------------------|----------------------------------------------|------------------|-------------|
| N          | 34                                            | 21                                           | 7                |             |
| Overall RR | 100%                                          | 80.9%                                        | 57.1%            | <0.01       |
| Major RR   | 88.2%                                         | 57.1%                                        | 28.6%            | <0.01       |




#### Bortezomib Rituximab First Line according to CXCR4 mut




#### **Bendamustine Rituximab First Line**



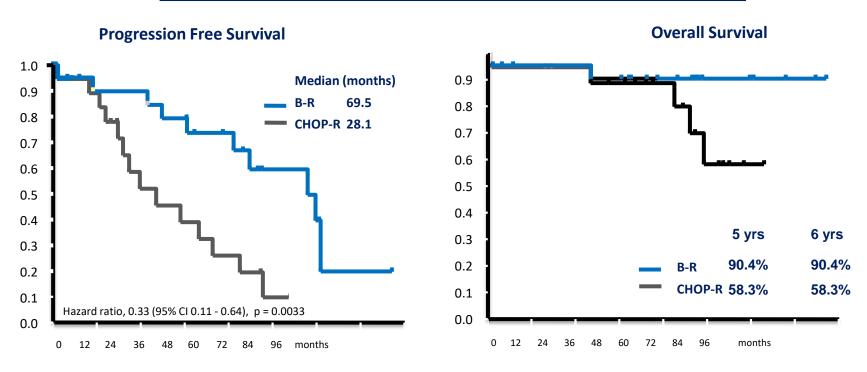

# Benda-Rituximab versus DRC in treatment naive WM (retrospective study)



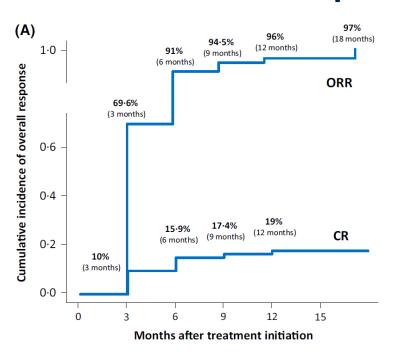


## Dexamethasone, Rituximab and Cyclophosphamide primary therapy




#### **PROS:**

#### **CONS:**


- Minimal myelo and immunosuppressive properties
   89% of pts completed the expected 6 courses
   Median
  - Median time to 50% IgM reduction: 4.1 m

# Bendamustine-Rituximab versus R-CHOP (subanalysis of the Stil NHL1 study in WM patients)

| N=41 evaluable | Benda-R (N=22) | CHOP-R (N=19) |
|----------------|----------------|---------------|
| Response rate  | 21 (95%)       | 18 (95%)      |



# Bendamustine-Rituximab First Line retrospective French study



56%: pts completed the 6 cycles of BR at 90 mg/sqm

44%: had dose reduction to 70 mg/sqm and/or less than 6 or delayed cycles

No difference in PFS (2 y 87% vs 88%)

#### **PROS:**

- Prolonged PFS
- Rapidly effective (bulky disease)
- No impact from CXCR4 mut

#### **CONS:**

- Myelotoxicity/late infectious toxicities:
  - -dose reduction to 70 mg/sqm in elderly patients
  - -consider 4 courses
- Secondary MDS/LAM (?): ~0-3%

## First Line

## DRC

- Elderly
- Severe Cytopenia
- WM with symptoms IgM related
- No bulky disese
- No hyperviscosity

## **BendaR**

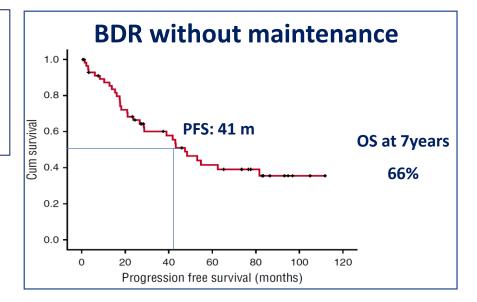
- Younger
- Bulky disease
- Hypervisocosity/High IgM level
- Cytopenias
- Reduced dose/N° cycles

## **Bortezomib and Rituximab based therapy**

#### 3 Phase II studies: with or without dexamethasone

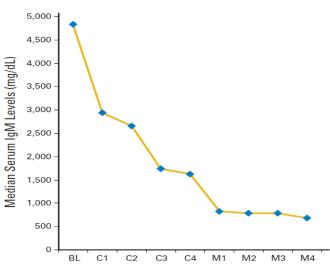
- > BR B: 1.6 mg/sqm iv d 1,8,15 every 28d for 6 cycles plus R: course 1,4
- BDR B: 1.3 mg/sqm iv and DEX 40 mg days 1, 4, 8, 11 plus R: d 21 for 4 cycles Maintenance: 4 cycles every 12 w
- BDR B iv 1.3 mg/sqm d: 1, 4, 8, 11 1<sup>st</sup> cycle
   B iv 1.6 mg/sqm with DEX 40 mg d: 1, 8, 15, 22 cycles 2 -5; R weekly cycles 2,5

#### Responses


ORR: 88-96%

MRR: 65-83%

CR: 2-13%


## BDR with maintenance

Median TTP: 52 m



## **Bortezomib and Rituximab based therapy**





#### **PROS:**

- Rapid IgM decrease
- Low Myelotoxicity rate
- Low risk of SM
- No impact CXCR4 mut status

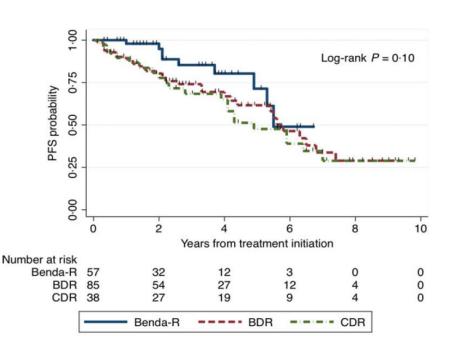
#### **CONS**

Peripheral neuropathy: 46%-69%

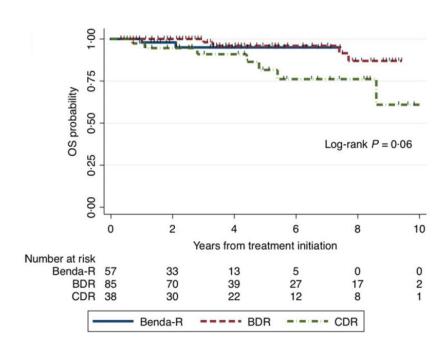
Grade 1: 22%-39%

Grade 2: 15%-30%

**Grade 3: 7%** 

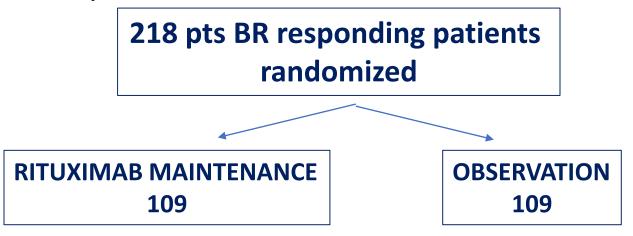

Lower rate neuropathy with weekly schedule and sc administration

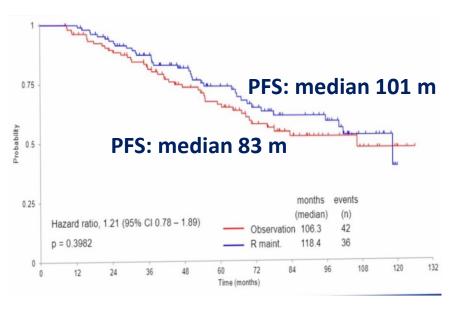
Steroids addition: Herpes Zooster prophilaxis

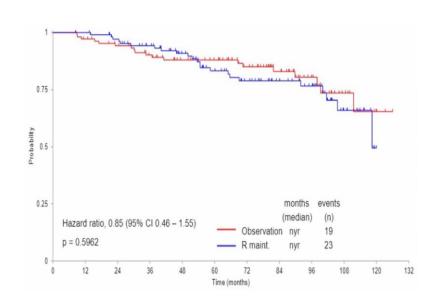

## Response and survival for primary therapy and maintenance Rituximab



#### No difference in response rates





| Regimen | HR (95% CI)       | Р      |
|---------|-------------------|--------|
| CDR     | 1.00 (Ref)        |        |
| Benda-R | 0.18 (0.007-0.43) | <0.001 |
| BDR     | 0.55 (0.30-0.99)  | 0.046  |




| Regimen | HR (95% CI)      | Р     |
|---------|------------------|-------|
| CDR     | 1.00 (Ref)       |       |
| Benda-R | 0.24 (0.05-1.27) | 0.09  |
| BDR     | 0.14 (0.03-0.61) | 0.009 |

Two Years Rituximab Maintenance Vs. Observation after First Line Treatment with Bendamustine Plus Rituximab (B-R) in Patients with WM Results of a Prospective, Randomized, Multicenter Phase 3 Study (the StiL NHL7-2008 MAINTAIN trial)

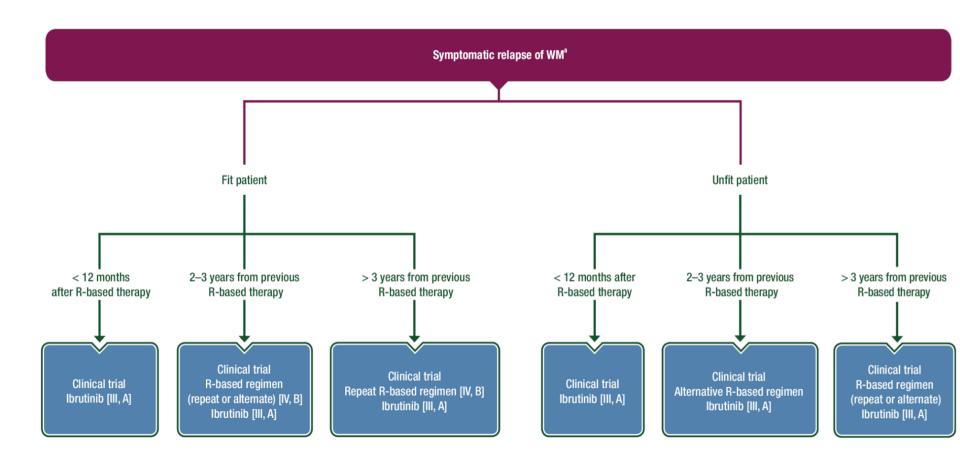






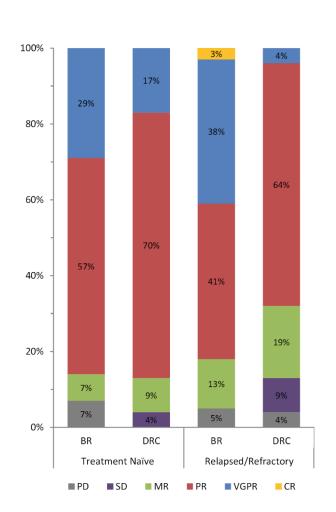
## Ibrutinib Monotherapy in Symptomatic, Treatment-Naïve Patients With Waldenström Macroglobulinemia

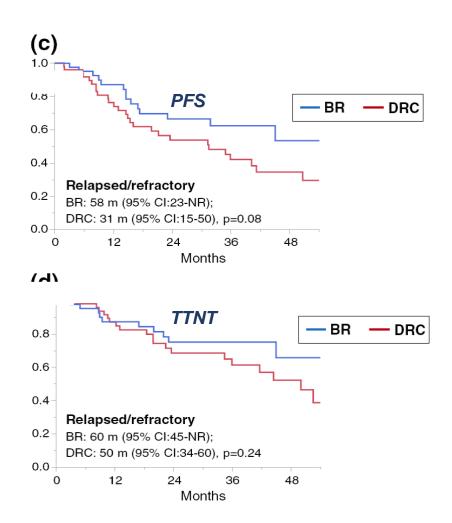
|                              | All pts<br>N=30 | MYD88 <sup>MUT</sup> CXCR4 <sup>WT</sup> n=16 | MYD88 <sup>MUT</sup> CXCR4 <sup>MUT</sup><br>n=14 | Р    |
|------------------------------|-----------------|-----------------------------------------------|---------------------------------------------------|------|
| ORR N (%)                    | 30 (100)        | 16 (100)                                      | 14 (100)                                          | 1.00 |
| Major Response Rate N<br>(%) | 25 (83)         | 15 (94)                                       | 10 (71%)                                          | .16  |
| Categorical Response N (%)   |                 |                                               |                                                   |      |
| Minor                        | 5 (17)          | 1 (6)                                         | 4 (29)                                            | .16  |
| Partial                      | 19 (63)         | 10 (63)                                       | 9 (64)                                            | 1.00 |
| VGPR                         | 6 (20)          | 5 (31)                                        | 1 (7)                                             | .18  |
| Median Time to<br>Response   |                 |                                               |                                                   |      |
| Minor Response               | 1.0 m           | 0.9                                           | 1.7                                               | .07  |
| Major Response               | 1.9 m           | 1.8                                           | 7.3                                               | .01  |


## Ibrutinib Monotherapy in Symptomatic, Treatment-Naïve Patients With Waldenström Macroglobulinemia

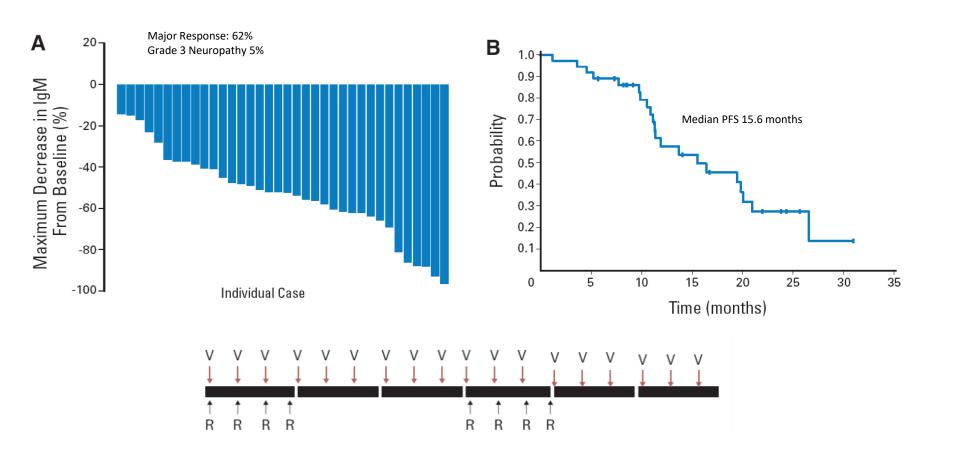
|                                        | All pts<br>N=30             | MYD88 <sup>MUT</sup> CXCR4 <sup>WT</sup><br>n=16 | MYD88 <sup>MUT</sup> CXCR4 <sup>MUT</sup><br>n=14 | P-value     |
|----------------------------------------|-----------------------------|--------------------------------------------------|---------------------------------------------------|-------------|
| ORR N (%)                              | 30<br>(100)                 | 16 (100)                                         | 14 (100)                                          | 1.00        |
| Major Response Rate N (%)              | 25 (83)                     | 15 (94)                                          | 10 (71%)                                          | .16         |
| Categorical Response N (%)             |                             |                                                  |                                                   | .16         |
| Minor<br>Partial<br>VGPR               | 5 (17)<br>19 (63)<br>6 (20) | 1 (6)<br>10 (63)<br>5 (31)                       | 4 (29)<br>9 (64)<br>1 (7)                         | 1.00<br>.18 |
| Median Time to Response Minor Response |                             |                                                  |                                                   |             |
| Major Response                         | 1.0 m<br>1.9 m              | 0.9<br>1.8                                       | 1.7<br>7.3                                        | .07<br>.01  |

18 months PFS: 92% 18 monts OS: 100%


2 progressions: CXCR4<sup>MUT</sup>

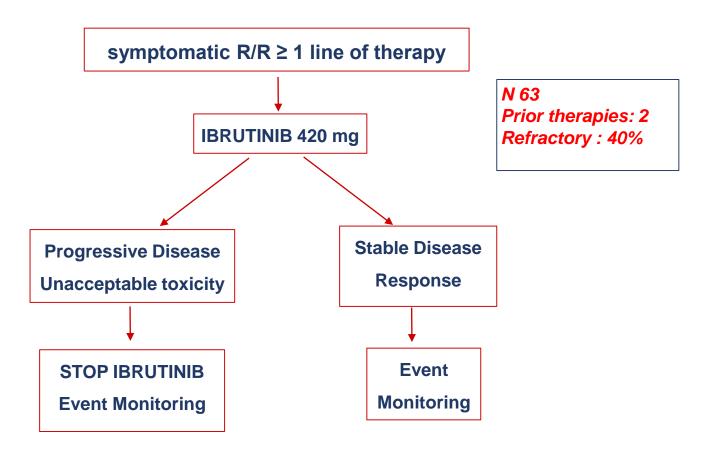

## <u>Therapeutic Algorithm – ESMO Guidelines 2018</u>




## DRC and BR in relapsed WM Retrospective monocentric analysis

#### Responses



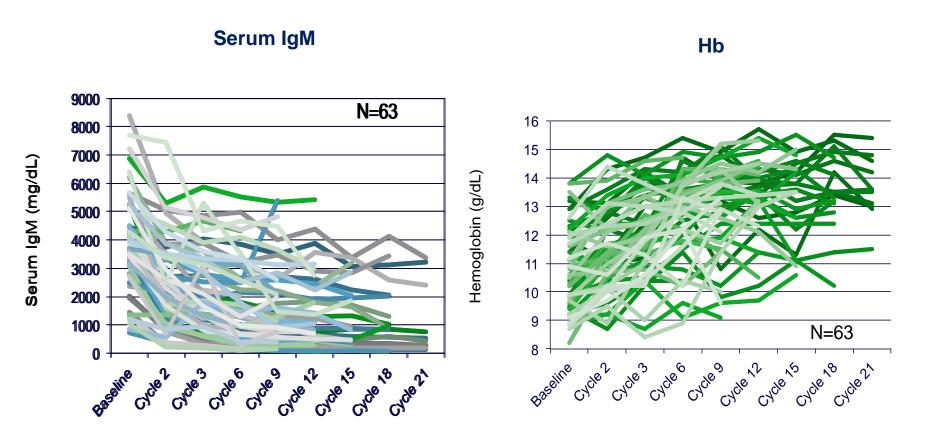



## Weekly R-Bortezomib in relapsed WM



#### ORIGINAL ARTICLE

## Ibrutinib in Previously Treated Waldenström's Macroglobulinemia




### Ibrutinib in previously treated WM: updated results

### The median time on ibrutinib was 46 months

- Improvements in categorical responses
  - Median serum IgM level declined from 3,520 to 821 mg/dL (p<0.0001)</li>
  - Bone marrow involvement declined from 60% to 20% (p<0.0001)</li>
  - **Hemoglobin level** rise from 10.5 to 14.2 g/dL (p<0.0001)

## Serum IgM and Hb Levels Following Ibrutinib



**Updated:** 

Best IgM Response: 3,520 to 821 mg/dL; p<0.001

Best Hemoglobin Response: 10.5 to 14.2; p<0.001

# **Updated Clinical Responses to Ibrutinib**

ORR: 91% (No change) Major RR (≥ PR): 73→78%

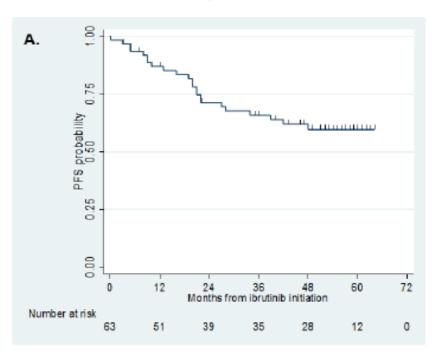
|      | (N=)  | (%)                      |
|------|-------|--------------------------|
| VGPR | 10→18 | 16%→29%                  |
| PR   | 36→31 | <b>57%</b> → <b>49</b> % |
| MR   | 11→8  | 17%→13%                  |

Median time to  $\geq$  MR: 4 weeks

Median time to ≥ PR or better: 8 weeks

Data cutoff: December, 2017

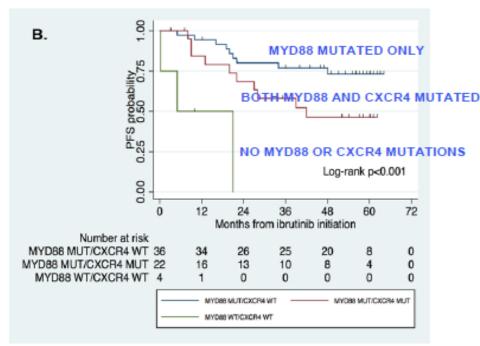
Median time on treatment: 47 months


# Responses to ibrutinib are impacted by MYD88 and CXCR4 mutations

|                                   | ALL | MYD88mut<br>CXCR4 wt | MYD88mut<br>CXCR4 whim | MYD88 WT<br>CXCR4 wt | P-value |
|-----------------------------------|-----|----------------------|------------------------|----------------------|---------|
| N=                                | 63  | 36                   | 21                     | 5*                   |         |
| ORR                               | 91% | 100%                 | 85.7%                  | 60%                  | 0.005   |
| Major(>PR)                        | 78% | 97%                  | 67%                    | 0%                   | <0.001  |
| VGPR                              | 29% | 44%                  | 10%                    | 0%                   | 0.007   |
| Time to Minor<br>Response<br>(mo) | 1.0 | 1.0                  | 1.0                    | 1.0                  | 0.10    |
| Time to Major response (mo)       | 2.0 | 2.0                  | 6.0                    | N/A                  | 0.05    |

<sup>\* 2</sup> patients at initial reporting with major responses were discovered subsequently to have MYD88 mutate disease (S243N, L265P). One patient at initial reporting as unknown CXCR4 status was subsequently found to CXCR4 mutated disease upon genotyping of CD19-selected WM cells.

## Ibrutinib in previously treated WM, updated PFS

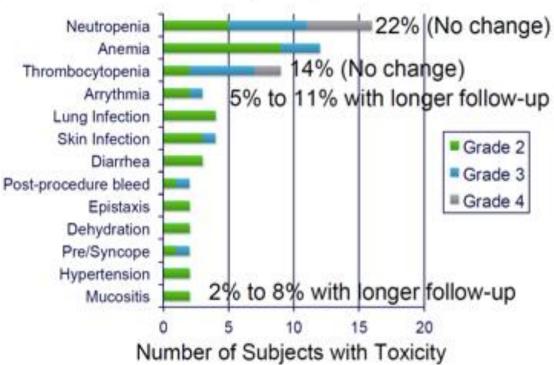

### All patients



5-year PFS rate: 54%

**5-year OS rate: 87%** 

### MYD88 and CXCR4 Status




| MYD <sup>Mut</sup> CXCR4 <sup>WT</sup> | MYD <sup>Mut</sup> CXCR4 <sup>mut</sup> | MYD <sup>WT</sup> CXCR4 <sup>WT</sup> |
|----------------------------------------|-----------------------------------------|---------------------------------------|
| m PFS: NR                              | m PFS: 42 m                             | m PFS: 5 m                            |
| 5-year PFS rate:<br>71%                | 5-year PFS rate:<br>34%                 | -                                     |

# Ibrutinib Related Adverse Events in previously treated WM patients

**Original Study** 

Toxicities >1 patient; N=63



Update on Adverse Events (Grade ≥2) in ≥5% of patients: Neutropenia (22%); Thrombocytopenia (14%), Pneumonia (9%); GERD (8%); Hypertension (8%); anemia (6%); and skin infection (5%). Seven patients (11%) had atrial arrhythmia [Grade 1 (n=1); Grade 2 (n=5); Grade 3 (n=1)], and 6 continued ibrutinib following medical management.

# Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström's Macroglobulinemia

M.A. Dimopoulos, A. Tedeschi, J. Trotman, R. García-Sanz, D. Macdonald, V. Leblond, B. Mahe, C. Herbaux, C. Tam, L. Orsucci, M.L. Palomba, J.V. Matous, C. Shustik, E. Kastritis, S.P. Treon, J. Li, Z. Salman, T. Graef, and C. Buske, for the iNNOVATE Study Group and the European Consortium for Waldenström's Macroglobulinemia\*

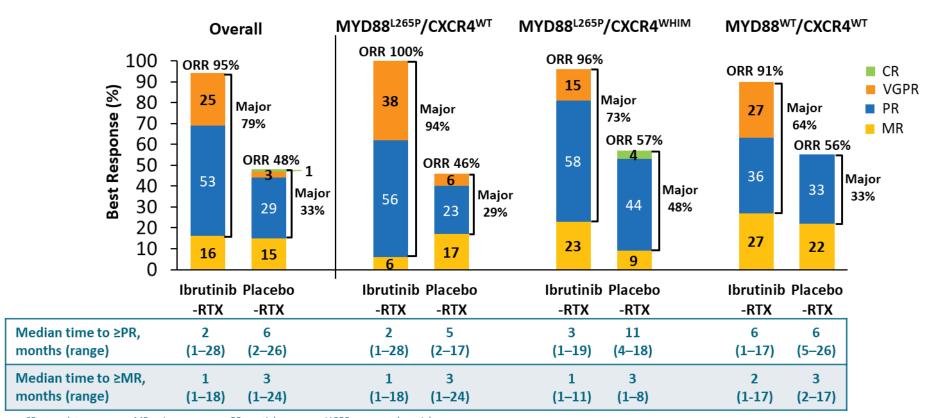
### Key eligibility criteria

- •Confirmed WM\* (N≈150) •Measurable disease (serum IgM >0.5 g/dL) •RTX sensitive
  - Not refractory to last prior RTX-based therapy
  - Had not received RTX <12 months before first study dose

#### 1:1 Randomization Stratification

•IPSSWM (low vs intermediate vs high)
•Number of prior regimens (0 vs 1-2 vs ≥3)
•ECOG status (0-1 vs 2)

# Arm A ibrutinib-RTX Oral ibrutinib 420 mg once daily until PD RTX 375 mg/m² IV on day 1 of weeks 1–4 and 17–20


Arm B
placebo-RTX
3 matching placebo capsules until PD
RTX 375 mg/m² IV on
day 1 of weeks 1–4 and 17–20

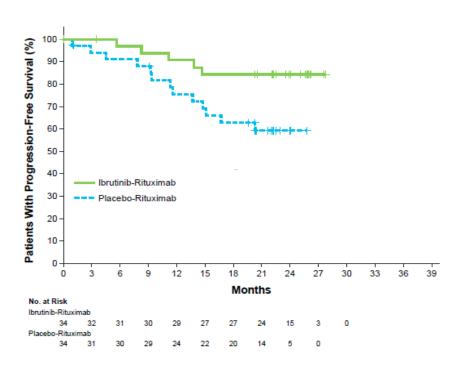
n pts prior therapies, n(%)
75 pts 0 34 (45%)
1-2 34 (45%)
3 7 (9%)

n pts prior therapies, n(%)
75 pts 0 34 (45%)
1-2 36 (48%)
5 7 (9%)

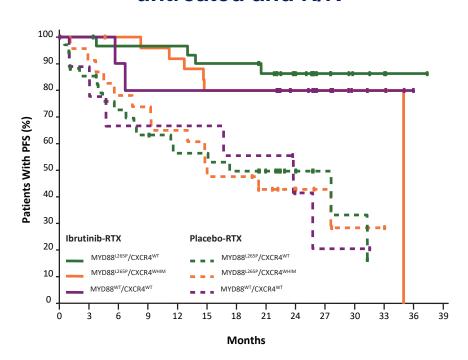
- Primary Endpoint: PFS by IRC
- •Secondary Endpoints: Response rate, TTnT, sustained hematologic improvement, PROs, OS, safety

# Randomized Study: Higher Response Rates With Ibrutinib-RTX Independent of MYD88/CXCR4 Genotype




CR, complete response; MR, minor response; PR, partial response; VGPR, very good partial response.

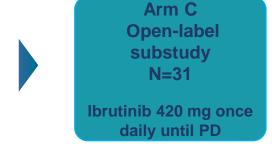
<sup>&</sup>lt;sup>a</sup>Following modified 6th IWWM Response Criteria (NCCN 2014); required two consecutive assessments.

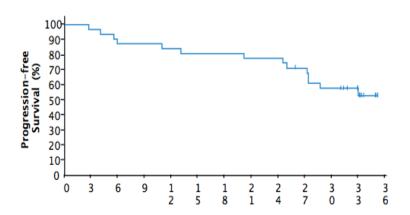

#### The NEW ENGLAND JOURNAL of MEDICINE

# Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström's Macroglobulinemia

# Progression-Free Survival Untreated Pts




# Progression-Free Survival untreated and R/R






Refractory to last rituximab-containing regimen, defined as

- Relapse after <12 months of treatment or
- Failure to achieve at least a minor response



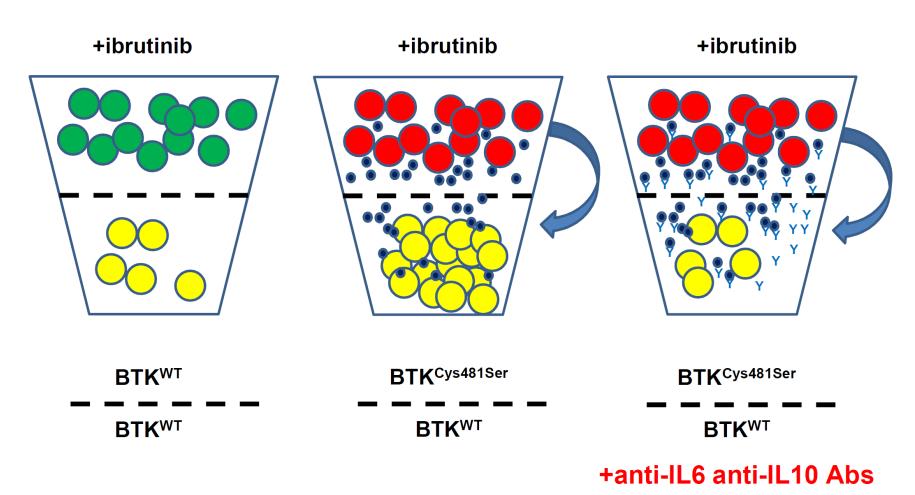


|                  | Median PFS, months (95% CI) | 30-month PFS rate |
|------------------|-----------------------------|-------------------|
| Ibrutinib (n=31) | Not reached (27.4 -NE)      | 57.5%             |

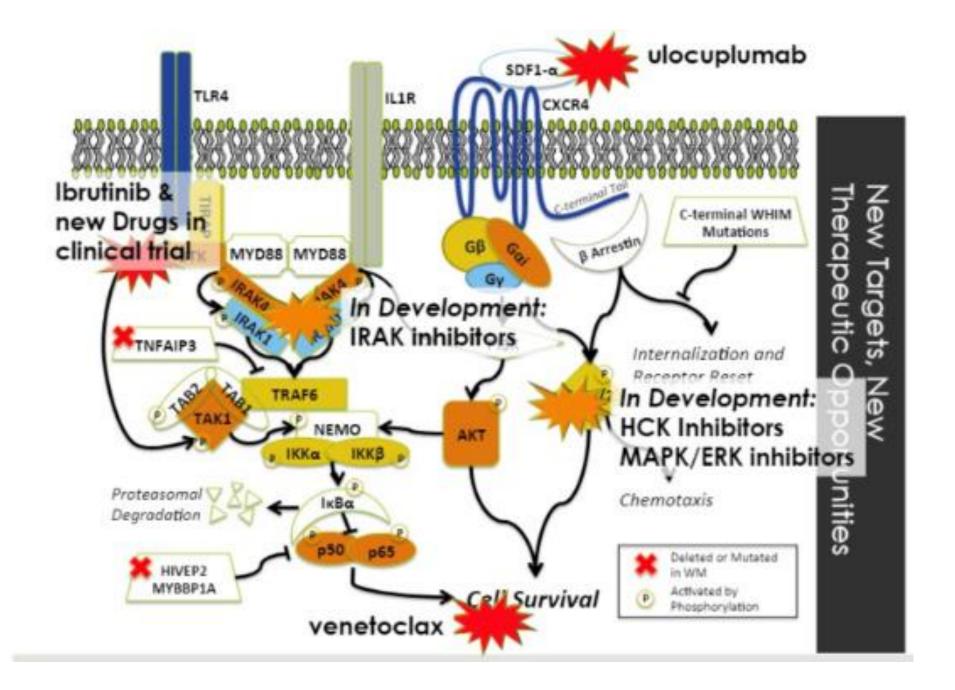
## Ibrutinib discontinuation and withdrawl symptoms

Temporary interruption of ibrutinib therapy is associated with transient increases in serum IgM level which appear to persist longer for patients with the MYD88<sup>MUT</sup> CXCR4<sup>WHIM</sup> tumor genotype

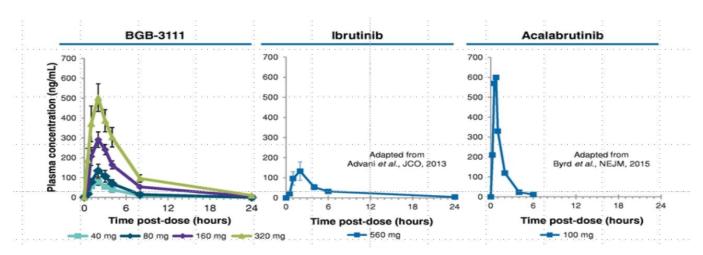
-Median increase in serum IgM level 50% (range, 4-555%)


-59% increases met criteria for PD

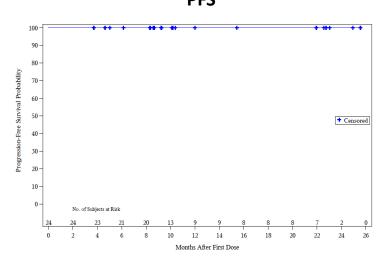
> 18% of patients develop withdrawl symptoms (not always associated to PD)

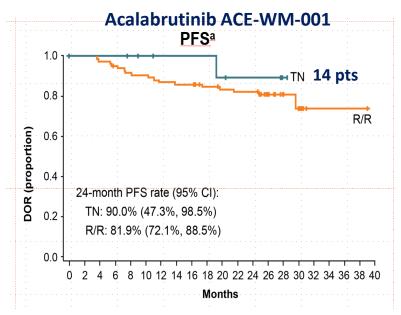

| Adverse event | Grade 1  | Grade 2 | All Grades |
|---------------|----------|---------|------------|
| Fever         | 12 (55%) | 7 (32%) | 19 (86%)   |
| Body aches    | 8 (36%)  | 3 (14%) | 11 (50%)   |
| Night sweats  | 3 (14%)  | 3 (14%) | 6 (28%)    |
| Arthralgias   | 4 (18%)  | 1 (5%)  | 5 (23%)    |
| Chills        | 3 (14%)  | 1 (5%)  | 4 (18%)    |
| Headache      | 2 (9%)   | 2 (9%)  | 4 (18%)    |
| Fatigue       | 2 (9%)   | 0 (0%)  | 2 (9%)     |

- In one third of cases, withdrawal symptoms are associated with progressive disease characterized by increasing serum IgM levels, and in two thirds, symptoms occur in the absence of disease progression with no change in serum IgM or hemoglobin levels.
- ➤ Following the reinitiation of ibrutinib: median time to a response of SD or better was 125 days for pts who met PD criteria significantly longer for pts with MYD88<sup>MUT</sup>CXCR4<sup>WHIM</sup> vs MYD88<sup>MUT</sup>CXCR4<sup>WT</sup> (207 vs. 101); p<0.0001)


# BTK<sup>Cys481Ser</sup> mutated clones release cytokines that protect BTK<sup>WT</sup> clones from ibrutinib triggered cytotoxicity




Chen et al, Blood 2018




### **BTK** inhibitors



### Zanubrutinib AU-003 PFS





Trotman et al, 2019; Owen et al, 20

# New proteasome inhibitors First Line

### **CARFILZOMIB**

### Induction ( q 21 days x 6 cycles):

iv CFZ, DEXA, Rituximab

#### Maintenance: (every 8 w for 8 cycles)

iv CFZ, DEXA, Rituximab

ORR 87.1% MR 67.7% CR/VGPR 36 %

Median PFS: 51 m

Treon et al, 2014

### **IXAZOMIB**

### Induction: ( q 21 days x 6 cycles):

Oral Ixazomib, DEXA, Rituximab

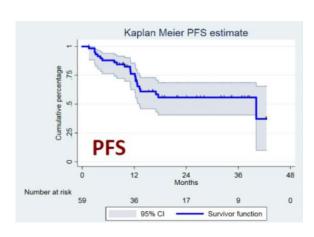
### Maintenance: (every 8 w for 8 cycles)

ixazomib, DEXA, Rituximab

ORR 96% MR 77% VGPR 15%

18 m PFS: 90%

Castillo et al, 2018


## R/R

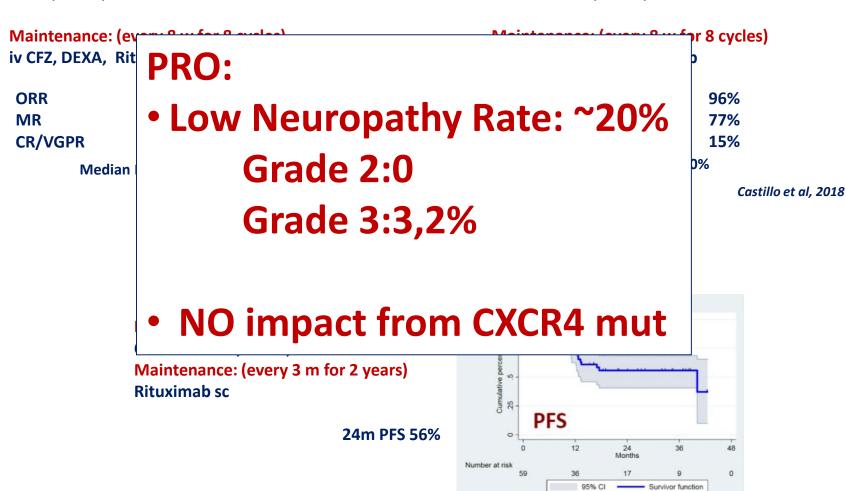
### **IXAZOMIB**

Induction: ( q 21 days x 6 cycles):
Oral Ixazomib, DEXA, Rituximab sc
Maintenance: (every 3 m for 2 years)

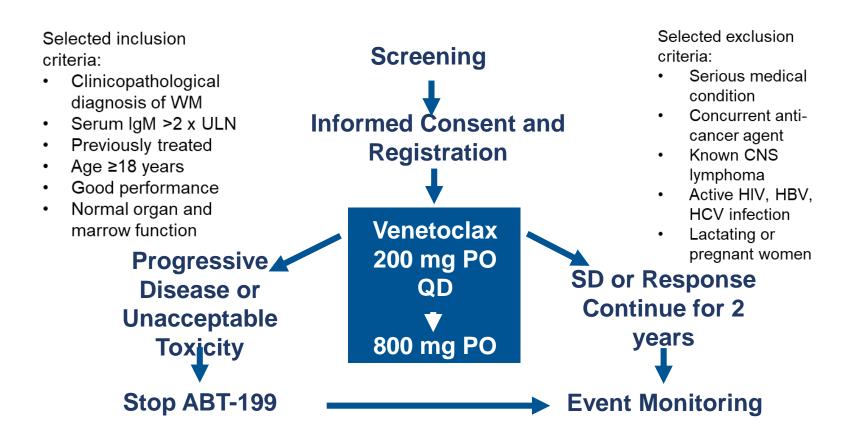
Rituximab sc

24m PFS 56%




# New proteasome inhibitors First Line

CARFILZOMIB


Induction ( q 21 days x 6 cycles):

iv CFZ, DEXA, Rituximab

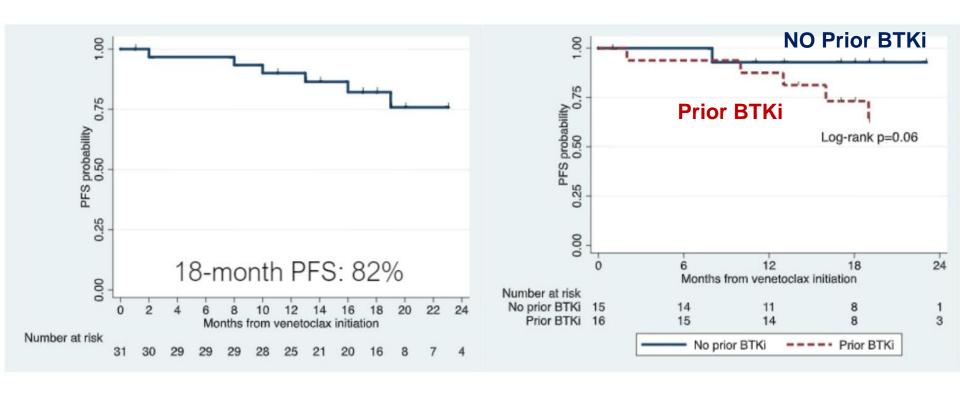
Induction: ( q 21 days x 6 cycles): Oral Ixazomib, DEXA, Rituximab



## Phase II Study of Venetoclax in Previously Treated WM



www.clinicaltrials.gov: NCT02677324


### Phase II Study of Venetoclax in Previously Treated WM

| Response  | N° Pts<br>(n=30) | No prior ibrutinib<br>(n=15) | Prior ibrutinib<br>(n=15) |
|-----------|------------------|------------------------------|---------------------------|
| Overall   | 26 (87%)         | 14 (93%)                     | 12 (80%)                  |
| Major     | 22 (74%)         | 13 (87%)                     | 9 (60%)                   |
| Very good | 5 (17%)          | 4 (27%)                      | 1 (7%)                    |
| Partial   | 17 (57%)         | 9 (60%)                      | 8 (53%)                   |
| Minor     | 4 (13%)          | 1 (7%)                       | 3 (20%)                   |
| Stable    | 4 (13%)          | 1 (7%)                       | 3 (20%)                   |

| Response  | CXCR4 mut | CXCR4wt |
|-----------|-----------|---------|
| Major     | 13 (63%)  | 9 (86%) |
| Very Good | 1 (7%)    | 4 (29%) |

1 patient had progressive disease at 9 months (MYD88, CXCR4, TP53)

## Phase II Study of Venetoclax in Previously Treated WM





Ospedale Niguarda Cancer Center Sistema Socio Sanitario

