

INCONTRO DI AGGIORNAMENTO SUI DISORDINI LINFOPROLIFERATIVI E SUI PROTOCOLLI DELLA FONDAZIONE ITALIANA LINFOMI

Ruolo della Radioterapia nei linfomi indolenti non follicolari

Dr. Mario Levis

Ricercatore a tempo determinato tipo B

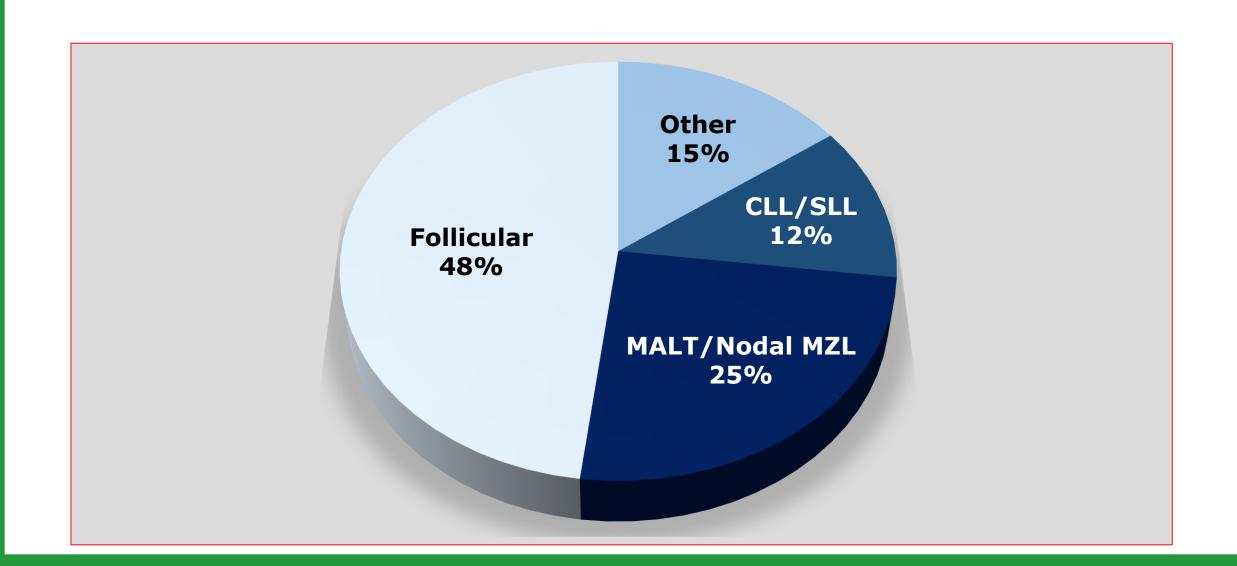
Dipartimento di Oncologia

Università degli Studi di Torino

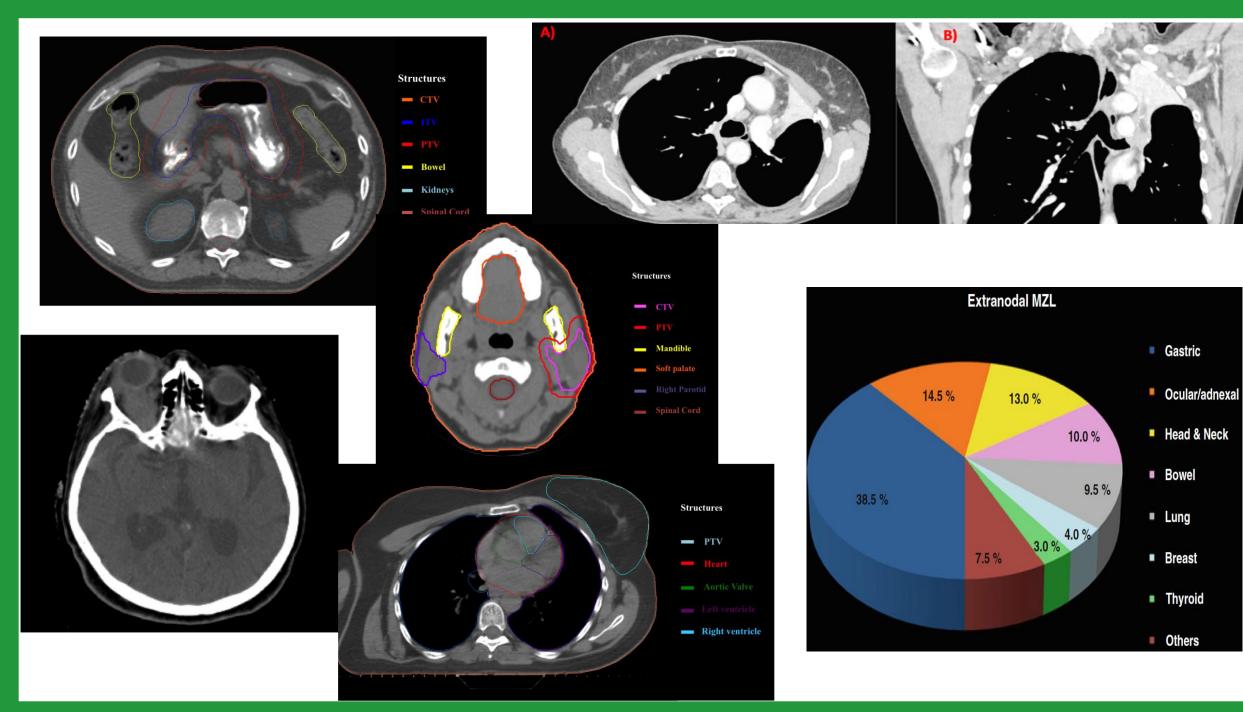
Indolent Lymphomas

- Approximately 40–45 % of all NHL
- Minority of patients present with localized disease
- Thorough staging with bone marrow biopsy and FDG-PET essential (debated in MZL)
- Highly radiosensitive

- Therapy guidelines
 - Stage I/II: radiotherapy
 - > Stage III/IV: systemic treatment, when needed


Indolent Lymphomas

Marginal Zone Lymphomas

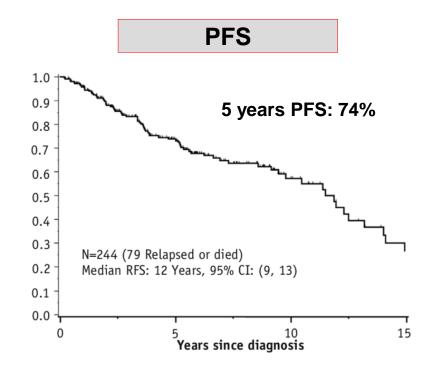


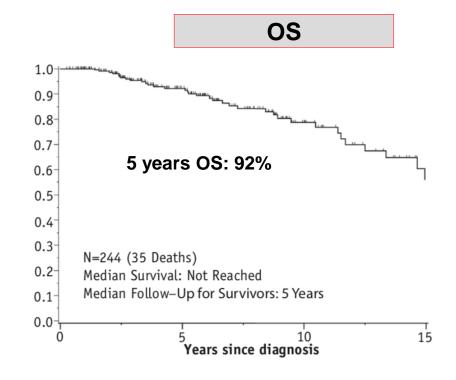
- ✓ Rarely involving nodal sites
- ✓ Frequently affecting extranodal sites
- ✓ Rarely presenting in Limited Stage
- ✓ ISRT in a valuable treatment for limited stage disease
- ✓ Omission of RT is detrimental in Stage I disease also for nodal MZL (OS 69% vs

54% @ 10 years, p < 0.001) Ling et al. Pract Radiat Oncol 2016

Outcomes after RT alone

www.filinf.it

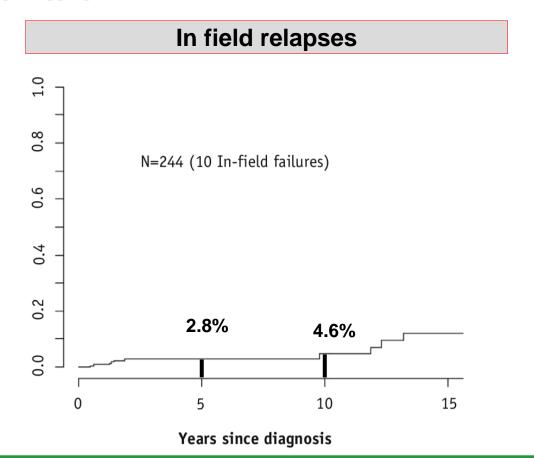


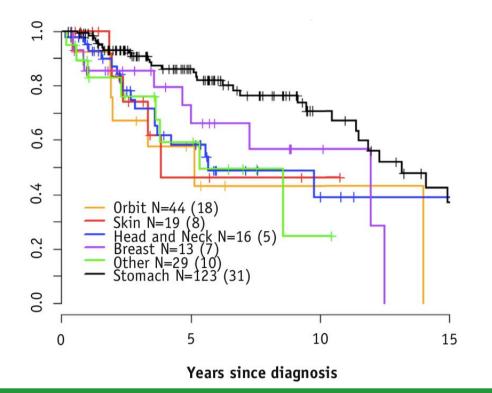


Long-Term Outcomes and Patterns of Relapse of Early-Stage Extranodal Marginal Zone Lymphoma **Treated With Radiation Therapy With Curative Intent**

Outcomes after RT alone

www.filinf.it



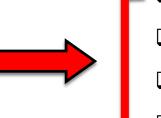


Long-Term Outcomes and Patterns of Relapse of Early-Stage Extranodal Marginal Zone Lymphoma Treated With Radiation Therapy With **Curative Intent**

PFS by site of disease

GASTRIC MALT LYMPHOMA

www.filinf.it


- Often associated with HP gastritis (90%)
- Regression in 60% of cases

(Kocl	h et	al.	2005)_
(1000)			# OO P	, .

Histological type	Frequency (%)		
Diffuse large B-cell lymphoma	59		
With MALT component	14		
Without MALT component	45		
MALT lymphoma of the marginal zone	38		
Mantle lymphoma	1		
Follicular lymphoma	0.5		
Peripheral T-cell lymphoma	1.5		

Patients predicted NOT to respond:

HP negative

Invasion beyond submucosa

t(11,18) translocation (present in up to 40%)

Nodal involvement

GASTRIC MALT LYMPHOMA

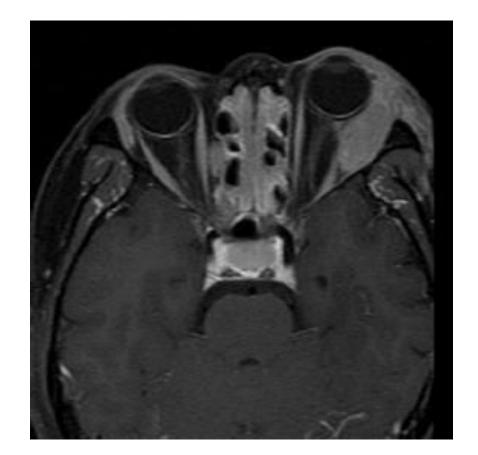
www.filinf.it

- ☐ RT standard of treatment
- □ CR > 90%
- ☐ FFP 80-90%

Reference, year	No. of patients	Treatment	RR (%)	EFS (%)	Survival (%)
Schechter et al. 1998 [71]	17	RT to the stomach and adjacent lymph nodes: 30 Gy/20 fr (range 28.5–43.5 Gy)	ND	27 months 100	27-month OS 100
Yahalom et al. 2002 [91]	51	RT to the stomach and adjacent nodes: median 30 Gy	CR 96	4-year FFTF 89	4-year OS 83 4-year CSS 100
Tsang et al. 2003 [84]	10	RT to the stomach and local nodes: 20–35 Gy	100	5 years 100	5-year OS 100
Koch et al. 2005 [42]	144	Whole abdominal RT: 30 Gy ± 10 Gy boost	ND	42-month FFP 88	42-month OS 93
Avilés et al. 2005 [5]	78	Whole abdominal RT: 30 Gy ± 10 Gy boost	CR 100	10-year FFP 52	10-year OS 75
Vrieling et al. 2008 [87]	56	Stomach+whole abdominal RT: 20 Gy+20 Gy boost	CR 95	ND	5-year OS 74 10-year OS 63 10-year CSS 94
Wirth et al. 2013 [89]	102	RT to the stomach and involved nodes (61 pts) or whole abdominal RT (41 pts): median 40 Gy	CR 96	10-year FFTF 88	10-year OS 70

RR response rate, EFS event-free survival rate, ND not determined, OS overall survival rate, CR complete remission, FFTF freedom from treatment failure, CSS cancer-specific survival rate, FFP freedom from progression

Orbital (ocular/adnexae) **MALT lymphoma**



1-2% of all NHL

7-8% of extranodal lymphomas

Most cases of extraocular orbital lymphoma are MALT lymphomas

Treatment of Orbital MALT lymphomas (antibiotics)

www.filinf.it

VOLUME 30 · NUMBER 24 · AUGUST 20 2012

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Chlamydophila Psittaci Eradication With Doxycycline As First-Line Targeted Therapy for Ocular Adnexae Lymphoma: Final Results of an International Phase II Trial

Andrés J.M. Ferreri, Silvia Govi, Elisa Pasini, Silvia Mappa, Francesco Bertoni, Francesco Zaja,
Carlos Montalbán, Caterina Stelitano, Maria Elena Cabrera, Antonio Giordano Resti, Letterio Salvatore Politi,
Claudio Doglioni, Franco Cavalli, Emanuele Zucca, Maurilio Ponzoni, and Riccardo Dolcetti

48% Chlamydial eradication, 15% complete lymphoma regression, 41% partial regression.

Cp-eradicating antibiotic therapy

International prospective phase 2 trial addressing the efficacy of first-line Chlamydophila psittaci-eradicating therapy with protracted administration of doxycycline followed by eradication monitoring and antibiotic re-treatment at infection re-occurrence in patients with newly diagnosed Ocular Adnexal Marginal Zone Lymphoma (OAMZL)

44 patients (accrual completed)

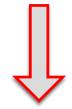
(A. Ferreri, E. Zucca, S. Govi)

Aim of the study is to establish in a prospective, multicentre phase 2 trial, the efficacy of an upfront targeted therapy consisting of *Cp*-eradicating therapy with prolonged administration of doxycycline followed by eradication monitoring and antibiotic re-treatment at infection re-occurrence in patients with newly diagnosed OAMZL.

Treatment of Orbital MALT lymphomas (systemic therapy)

Chemotherapy

- Limited data
- Different chemotherapy regimens



Complete response: 70-100%

BUT

Local recurrence: >29%

Immunotherapy

- response rates 50-87%
- median time to disease progression <1y

Treatment of Orbital MALT lymphomas (radiotherapy)

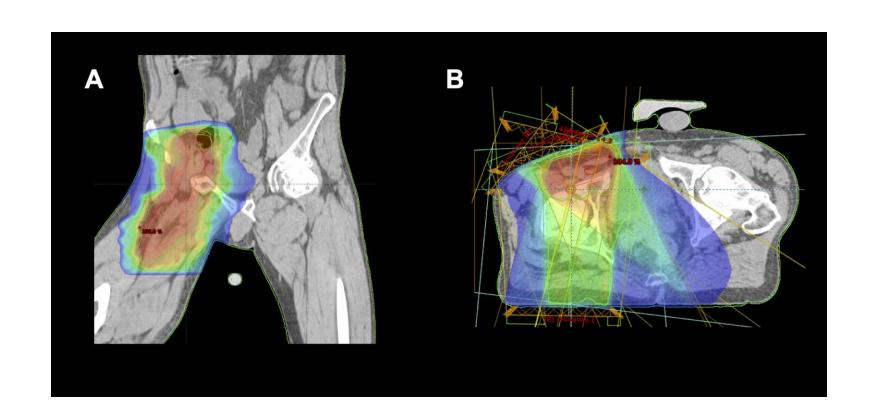
Reference, year	No. of patients	Stage I, %	Gy	CR,	LR, %	DR, %	Survival, %	LRM, %
Stafford et al. 2001	40	85	15-54	98	2	25	5-y RFS 88	0
							5-y OS 74	
							5-y DSS 100	
Le et al. 2002	31	100	30-40	100	0	16	10-y PFS 71	3
							10-y OS 73	
Fung et al. 2003	48	81	30.6	100	8	25	10-y OS 81	0
							10-y DSS 100	
Hasegawa et al. 2003	20	95	30	100	5	20	10-y PFS 70	0
							10-y DSS 100	
Tsang et al. 2003	30	97	25	97	17	10	5-y DFS 74	ND
							5-y OS 97	
Uno et al. 2003	50	100	20-46	98	6	6	5-y OS 91	2
Lee et al. 2005	29	100	30-45	100	3	0	3-y EFS 93	0
							3-y OS 100	
Ejima et al. 2006	42	100	30-36	84	10	10	5-y PFS 77	0
							5-y DSS 100	
Suh et al. 2006	48	96	30.6	96	6	0	10-y DFS 93	2
							10-y DSS 98	
Tanimoto et al. 2007	58	94	30-40	83	9	2	10-y PFS 72	0
					_		10-y OS 92	
Nam et al. 2009	66	100	20-45	97	3	7.5	5-y RFS 92	ND
					_		5-y OS 96.4	
Goda et al. 2011	89	100	25	99	2	22.5	7-y OS 91	4
							7-y DSS 96%	
	25		0.1.05				7-y RFS 64%	
Tran et al. 2013	25	92	24-25	100	4	8	5-y PFS 81	0
							5-y OS 100	

Primary RT is considered to be the treatment of choice

Local control 85-100%

Distant recurrence: 10-25%

Long-term RFS or DFS 70-90%

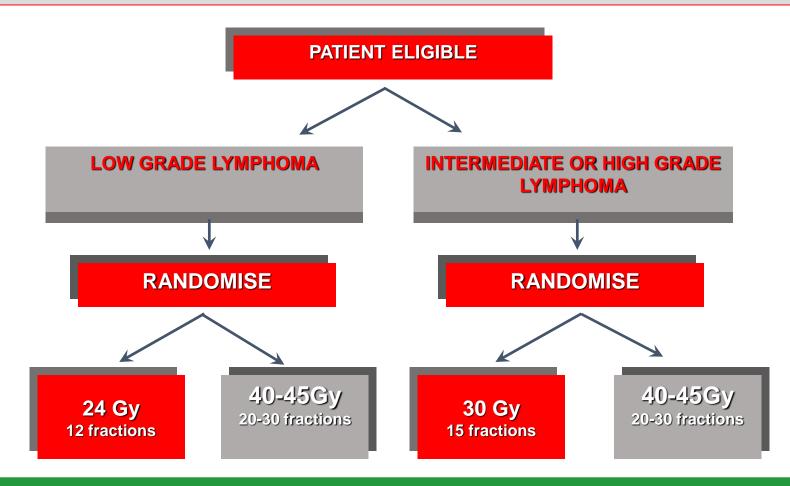

Technical issues for Radiation Oncologists

Doses

Volumes

Technique

1 - Doses (24 vs 45 Gy)



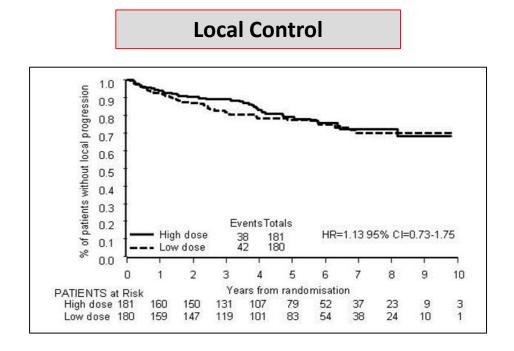
Reduced dose radiotherapy for NHL : A randomised phase III trial

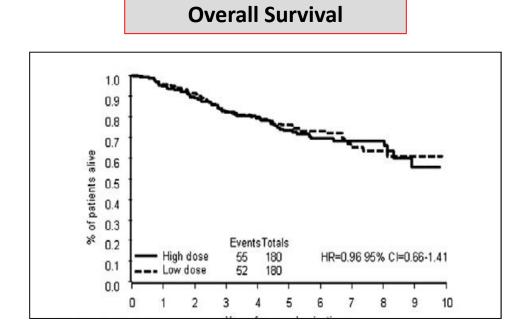
360 indolent NHL (mostly follicular and MZL) randomized

1 - Doses (24 vs 45 Gy)

Radiotherapy
EOncology
Total Planer Letters

Activities 1 Planer


Activities 2 Planer


Activities 3 Planer

Activi

Phase III randomised trial

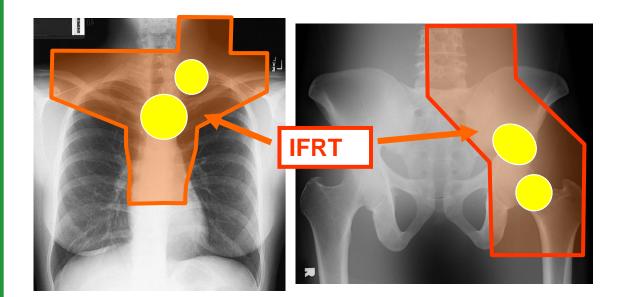
Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: A randomised phase III trial *,**

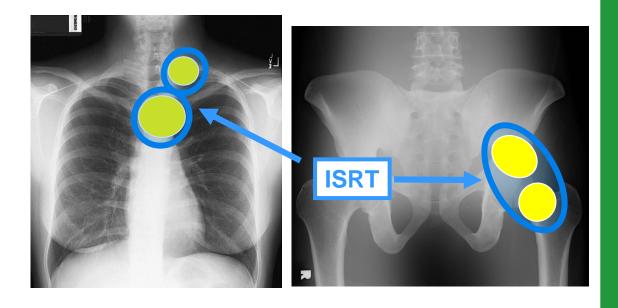
No loss of efficacy associated with radiotherapy doses of 24 Gy in indolent NHL

2 - Volumes (IFRT vs ISRT)

What Volume should be treated with radiotherapy?

2 - Volumes (IFRT vs ISRT)




Involved Field (IFRT)

2D planning, based on bony landmark

Involved Site (ISRT)

3D planning, based on lymphoma volume

Long-Term Outcomes for Patients With Limited Stage Follicular Lymphoma

www.filinf.it

Involved Regional Radiotherapy Versus Involved Node Radiotherapy

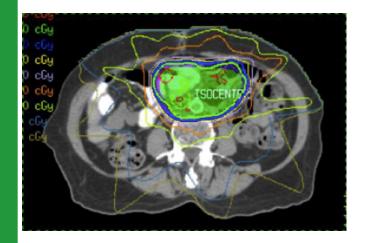
Table 2. Patterns of Failure

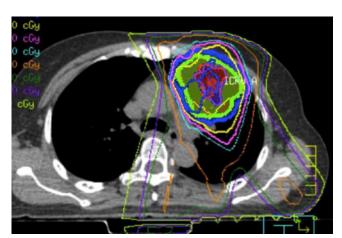
		No. of Patients	s (%)
	Total,	IRRT,	INRT≤5 cm,
	n=237	n=142	n=95
Total no. of recurrences Infield relapse only	98 (41)	65 (45)	32 (35)
	3 (1)	2 (1)	1 (1)
Distant relapse without infield relapse Distant only	84 (35)	54 (38)	30 (32)
	82	54	26
Regional only	1	-	1
Regional and distant Distant and infield recurrence	1 11 (5)	9 (6)	1 2 (2)

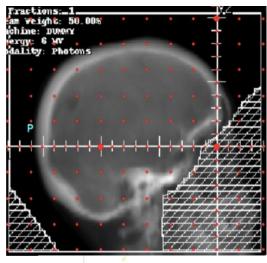
IRRT indicates involved regional radiotherapy; INRT≤5 cm, involved node radiotherapy with margins up to 5 cm.

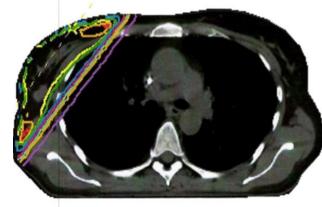
INRT/ISRT < 5 cm appears to be a safe alternative to IRRT/IFRT and is associated with a very low rate of regional-only recurrence

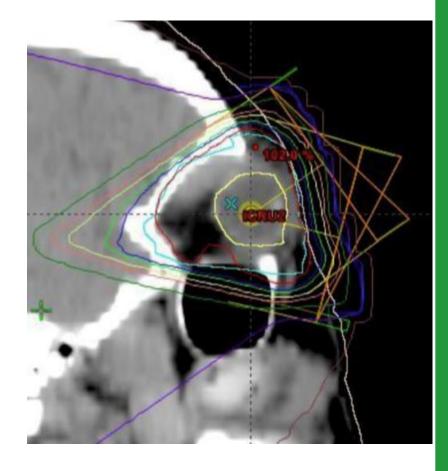
www.filinf.it



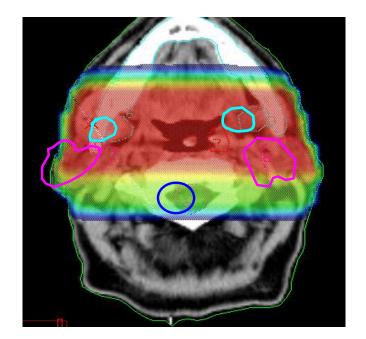


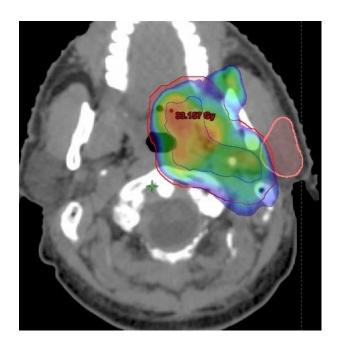



Modern Radiation Therapy for Extranodal **Lymphomas: Field and Dose Guidelines From the** International Lymphoma Radiation Oncology Group


Yahalom J et al. IJROBP 2015;92:11-31

3 - Technique (3DCRT vs IMRT)

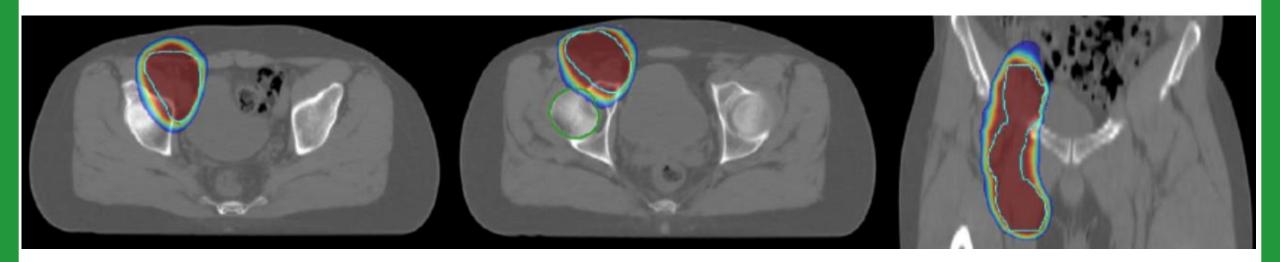




Conformal planning and precise delivery

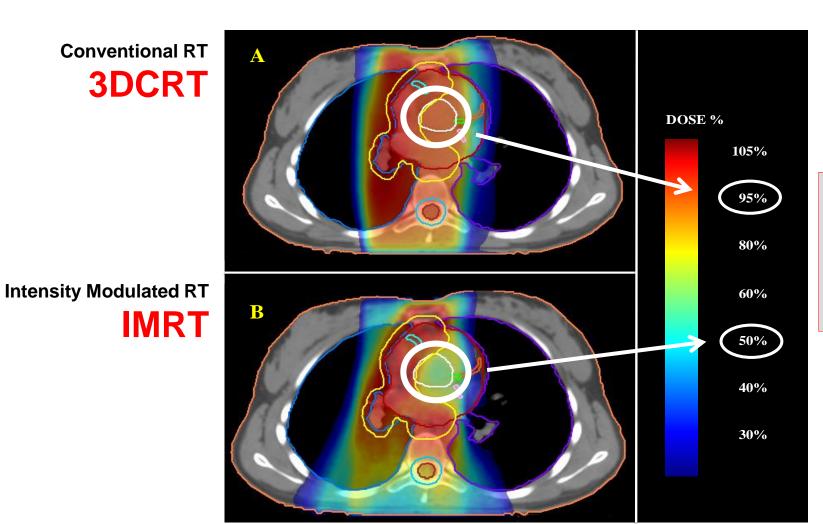
Conventional RT 3DCRT

Intensity modulated RT IMRT



IMRT better spares organs at risk

3 - Technique (3DCRT vs IMRT)



Conventional RT 3DCRT

IMRT better spares organs at risk from "high doses" of radiation

Critical issues #1: PLANNING

(GASTRIC MALT LYMPHOMA)

Technical issues of radiotherapy planning

Proposed solutions

✓ Gastric filling

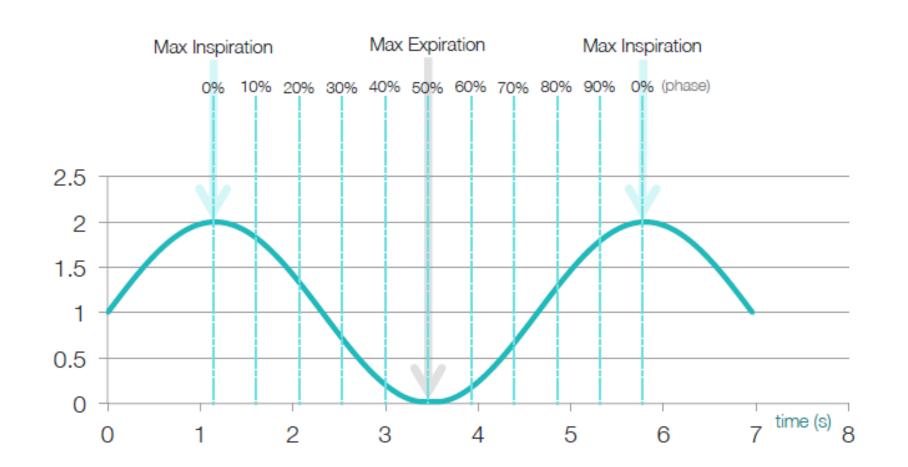
✓ Gastric motion (intra- and inter-fraction)

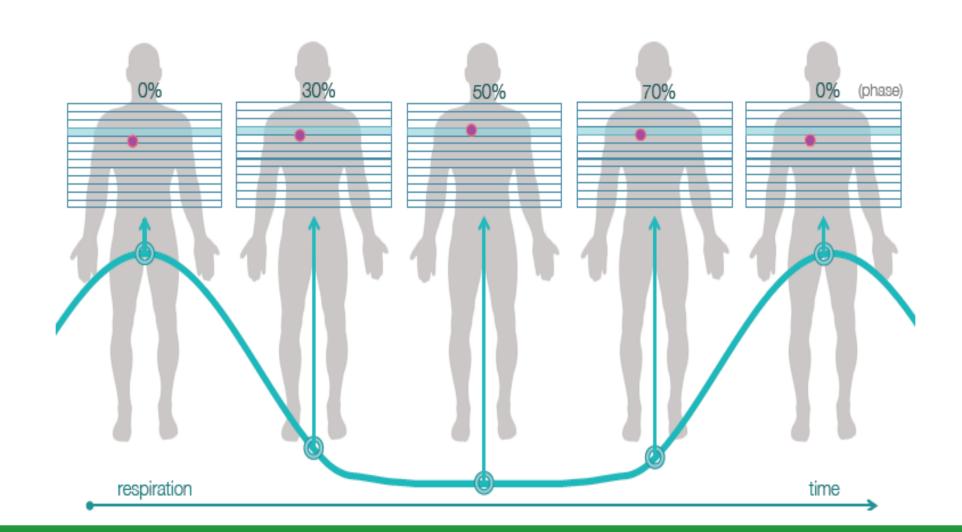
✓ Large radiated volume

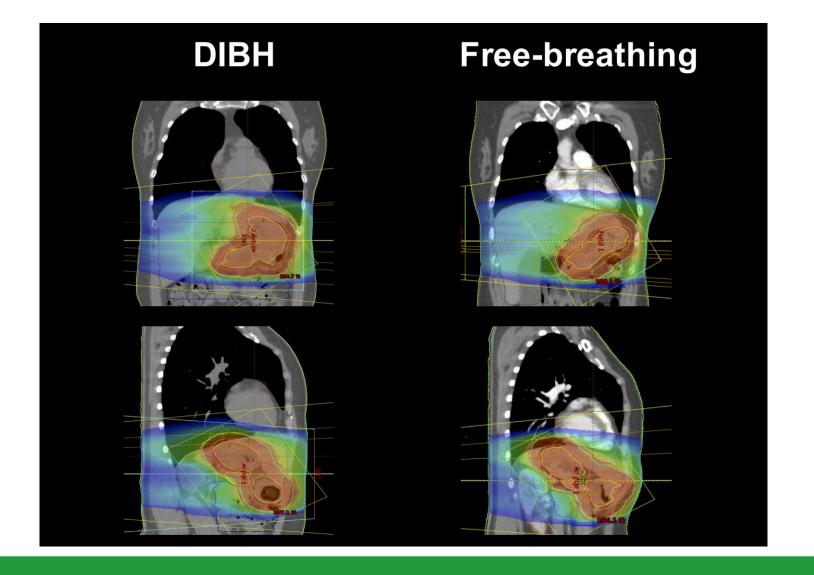
✓ Fasting 6 hours before RT fractions

√ 4D-CT planning (ITV definition)

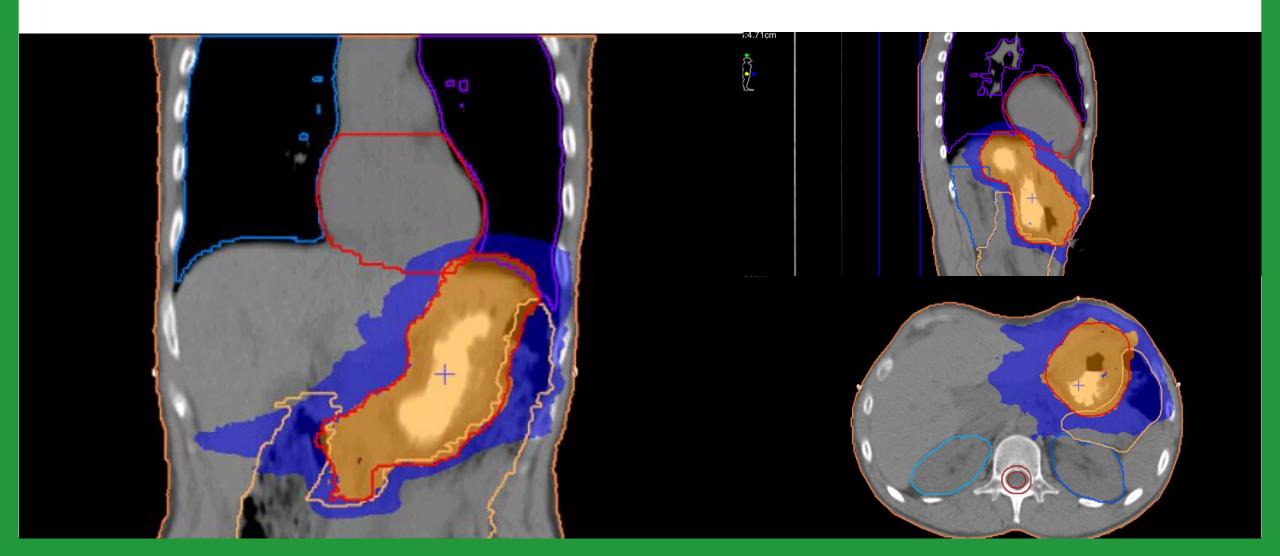
✓ IMRT planning


GASTRIC MALT LYMPHOMA (4D-CT planning)


GASTRIC MALT LYMPHOMA (4D-CT planning)

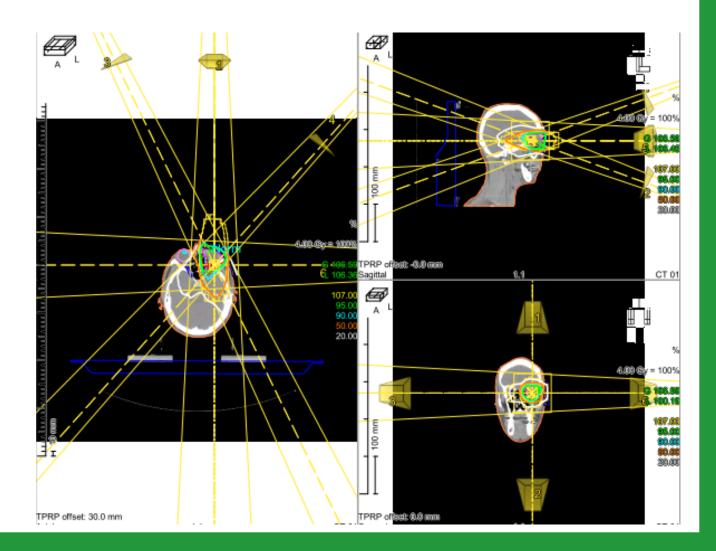


GASTRIC MALT LYMPHOMA (DIBH is alternative to 4D-CT planning)


Optimal dose distribution with IMRT/VMAT

Critical issues #2: RT DOSES

www.filinf.it


(ORBITAL MALT LYMPHOMA)

Main Complication of Ocular RT:

Cataract

Max RT dose tolerated by lens:

5 Gy

Can we further reduce RT dose?

Sometimes more is just more...!

Low Dose Radiotherapy

BOOM

BOOM

Basis for "Boom-Boom" Palliation

The discovery that small doses of radiotherapy could eradicate low-grade lymphomas was purely due to "serendipity"

Institute Gustave Roussy (IGR): patient refused additional palliative WAI after receiving 4 Gy

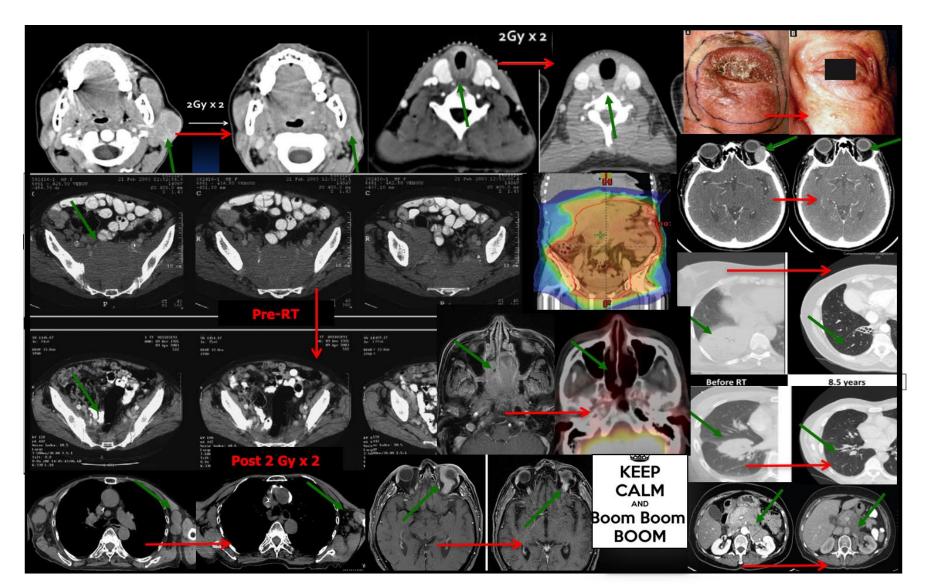
At follow-up found to be in CR

"Boom-Boom" palliation of Recurrent/Refractory NHL

Study	N (pts)	N (sites)	PR	CR	Overall RR	Response duration	Comment
Ganem 1994	27	N/A	52%	37%	89%	Range: 4 – 35 mo	
Sawyer 1997	11	16	38%	56%	94%	Median: 7 mo	
Girinsky 2001	48	135	24%	57%	81%	2 yr actuarial: 56%	
Johannsson 2002	22	31	22%	65%	87%	Median: 22 mo	Prospective Phase II
Haas 2003	109	304	31%	61%	92%	Median: 25 mo	Prospective Phase II
Haas 2005 [†]	71	177	39%	48%	87%	Median: 22 mo	Prospective Phase II
Summary			34%	54%	88%	Median: 19 mo	

Advantages of "Boom-Boom"

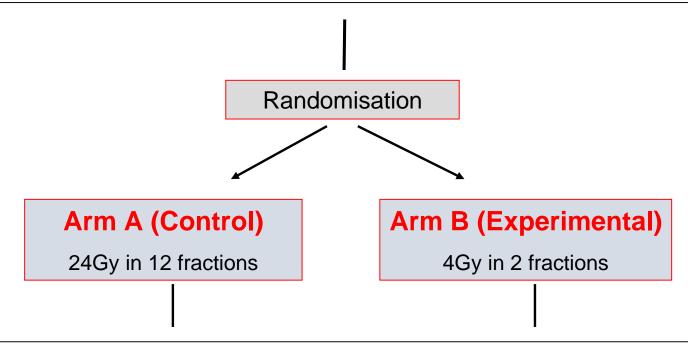
- Short treatment duration.
- Minimal morbidity. No myelosuppression.
- High response rate similar to that obtained with primary therapy.
- Effective and simple re-treatment
- Rapid response onset.
- Significant LPFS interval.


Clinical Applications

Whom to "Boom-Boom"?

- √ Follicular
- ✓ Mantle-cell
- ✓ CLL/SLL
- ✓ Marginal zone

Relapsed, refractory to systemic therapy? As an alternative adequate first-line?

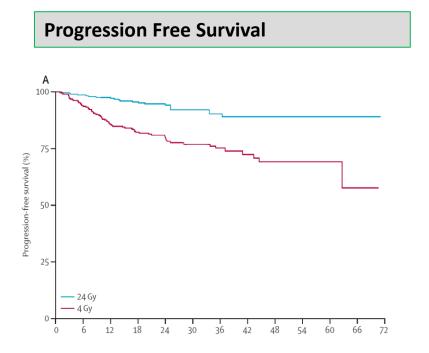


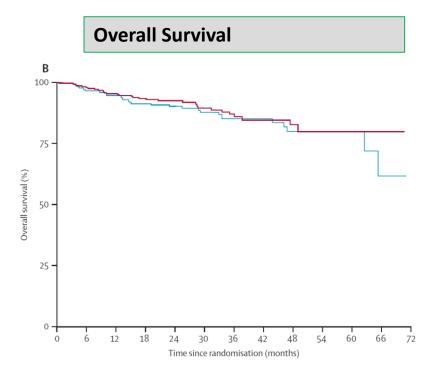
FORT: A randomised trial of low dose radiotherapy for indolent lymphomas

Histologically proven follicular NHL requiring radiotherapy for definitive treatment of stage IA or IIA disease or for palliation by virtue of tumour bulk or anatomical position

Follow up for 5 years

(4 weeks, 12 weeks, 6 months, 12 months, 18 months, 24 months and annually thereafter)





4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial

Lancet Oncol 2014

Peter J Hoskin, Amy A Kirkwood, Bilyana Popova, Paul Smith, Martin Robinson, Eve Gallop-Evans, Stewart Coltart, Timothy Illidge, Krishnaswamy Madhavan, Caroline Brammer, Patricia Diez, Andrew Jack, Isabel Syndikus

24 Gy in 12 fractions is more effective and remains the standard of treatment. "Boom boom" RT (2 Gy x 2) achieves high response rates (ORR 74%) and is a feasible option for palliation or retreatment

FORT trial (UK) 4 Gy vs 24 Gy Response rate according to histology

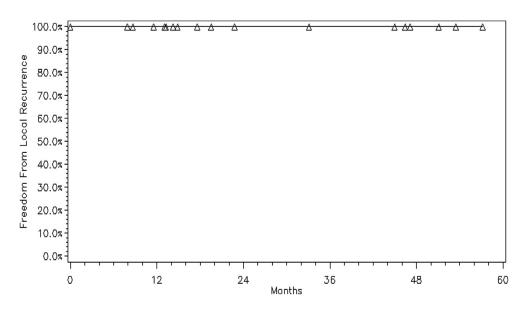
Hoskin et al. Lancet Oncol 2014

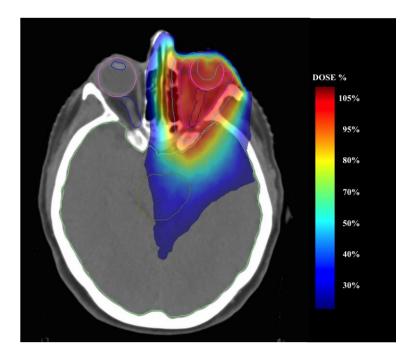
	24 Gy	4 Gy
All patients*		
Complete regression	176 (68%)	137 (49%)
Partial regression (>30%)	60 (23%)	90 (32%)
Stable disease (including <30% regression)	22 (8%)	44 (16%)
Progression	2 (<1%)	10 (4%)
Total	260	281
Follicular lymphoma		
Complete regression	152 (67%)	116 (48%)
Partial regression (>30%)	53 (23%)	78 (32%)
Stable disease (including <30% regression)	19 (8%)	40 (16%)
Progression	2 (<1%)	9 (4%)
Total	226	243
Marginal zone lymphoma		
Complete regression	24 (71%)	21 (55%)
Partial regression (>30%)	7 (21%)	12 (32%)
Stable disease	3 (1 %)	4 (11%)
Progression	0	1 (3%)
Total	34	38

ORR: 90% vs 80%, p < 0.01

ORR: 92% vs 87%, p = 0.71

Boom Boom RT in Orbital MALT Lymphoma



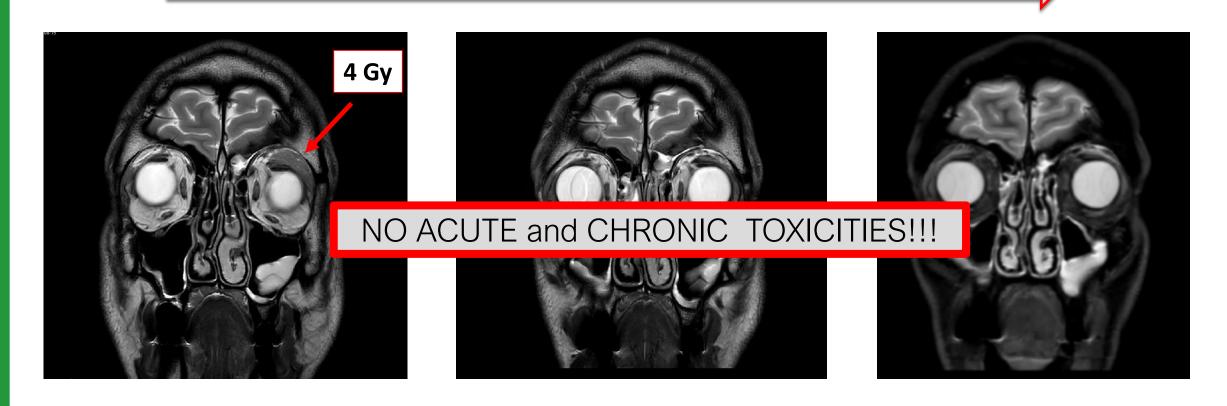

Clinical Investigation: Lymphoma

Low-Dose Radiation Therapy (2 Gy \times 2) in the Treatment of Orbital Lymphoma

Carolina E. Fasola, MD, MPH,* Jennifer C. Jones, MD, PhD,† Derek D. Huang, MD,‡ Quynh-Thu Le, MD,* Richard T. Hoppe, MD,* and Sarah S. Donaldson, MD*

Freedom from local relapse for all sites with complete response treated with low-dose radiation therapy (N=23).

Efficacy of Boom Boom RT in Orbital MALT Lymphoma



Radiological response:

At diagnosis

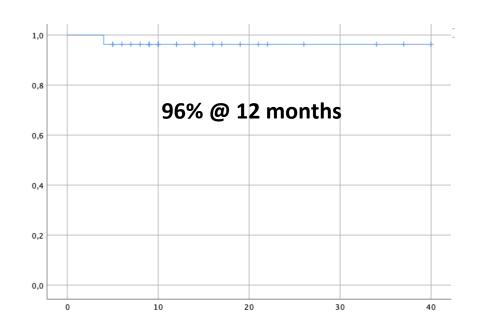
1st FU (2 months after RT)

3rd FU (6 months after RT)

Previous Experiences investigating LDRT in MALT lymphomas

First author, year	No. of Patients	Site of disease	Treatment	Results
	MALT/total			
Ganem, 1994 ⁶⁹	7/27	Nodal & Extranodal	2 Gy x 2 in 3 days	37% CR
Sawyer, 1997 ⁶⁶	5/11	Nodal & Extranodal	2 Gy x 2 in 3 days	38% CR, 56% PR
Haas, 2003 ⁶⁰	9/109	Nodal & Extranodal	2 Gy x 2 / 4 Gy x 1	61% CR, 31% PR, 8% non-responders
Haas, 2005 ⁶¹	25/71	Nodal & Extranodal	2 Gy x 2 / 4 Gy x 1	Median OS 67 months
Ng, 2006 ⁶⁵	2/10	Nodal & Extranodal	2 Gy x 2	90% CR
Luthy, 2008 ⁶³	2/23	Nodal & Extranodal	2 Gy x 2	88% CR, 12% PR
Rossier, 2011 ⁷⁰	13/43	Nodal & Extranodal	2 Gy x 2	28% CR, 15% PR, 26% SD, 11% PD; median
				OS 41 months
Chan, 2011 ⁷¹	5/54	Nodal & Extranodal	2 Gy x 2	71% CR, 17% PR, 8% SD, 2% PD, median
				TTLP 1.62 years
Girinsky, 2012 ⁵⁰	10/10	Lung	2 Gy x 2	5-years OS 100%, 5-years PFS 87.5%
Russo, 2013 ⁷²	18/187	Nodal & Extranodal	2 Gy x 2	TTFT-L 2.82 HR
Fasola, 2013 ⁴⁷	20/20	Orbit	2 Gy x 2	85% CR, 11% PR; 2-years FFLR 100%
Hoskin, 2014 ³⁴	72/548	Nodal & Extranodal	2 Gy x 2 vs. 24 Gy x 12	55% CR
Pinnix, 2017 ⁴⁸	14/22	Ocular adnexa	2 Gy x 2	86% CR, 14% PR; ORR 100%
Konig, 2018 ⁷³	20/47	Nodal & Extranodal	2 Gy x 2	90% CR, 3% PR; ORR 93%
Goyal, 2018 ⁷⁴	34/54	Skin	2 Gy x 2 / 4 Gy x 2	94% CR, 1-year failure rate: 6.7%
Ludmir, 2019 ⁷⁵	11/11	Breast	2 Gy x 2 vs 30 Gy x 15	Time from initial treatment to progression:
				45.6 months; 5-years PFS 100%
Total	267/1247			

LDRT Experience in MZLs and **MALT lymphomas @ UniTo**



☐ 27 patients

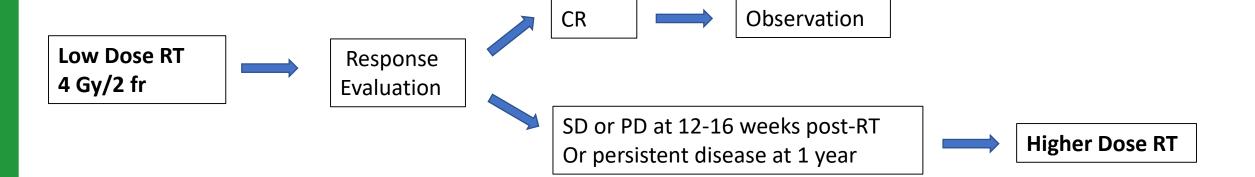
☐ Sites of disease:

- > Nodal
- Gastric
- > Orbit
- > Lung
- > Breast
- Salivary glands

Local Control

Progression Free Survival

Low-Dose Radiation Therapy in Treating Patients With Stage I-IV Stomach MALT Lymphoma



Ongoing study

M.D. Anderson Cancer Center Jillian Gunther

Primary outcome: Complete gastric response [Time Frame: Up to 1 year]

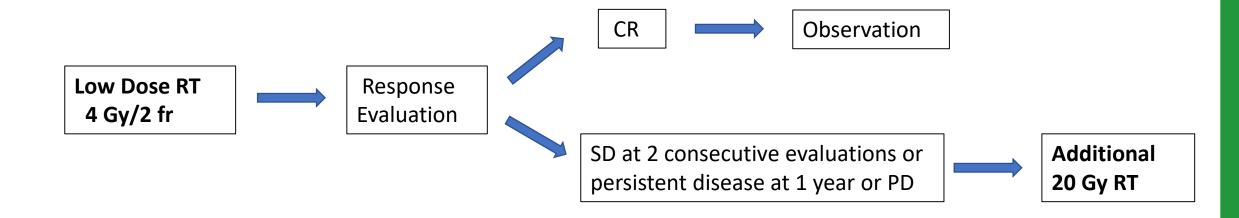
Estimated Primary Completion

May 8, 2021 (Final data collection date for primary outcome measure)

Date

Ultra Low Dose 4 Gy Orbital Radiation for Definitive Therapy of Indolent B Cell Lymphoma

www.filinf.it



Ongoing study

Primary outcome:

Local Orbital Control [Time Frame: 12 weeks]

Estimated Primary Completion

July 1, 2019 (Final data collection date for primary outcome measure)

Date

Low dose radiotherapy (2 x 2 Gy) in early stage nodal and extra-nodal Marginal Zone Lymphoma: a prospective multicenter phase II study.

PI: Mario Levis

Department of Oncology, Radiation Oncology

University of Torino

Obiettivo dello Studio

Obiettivo principale dello studio è indagare se il trattamento radiante a bassa dose (2 x 2 Gy) sia efficace quanto quello a dose standard, per quanto riguarda il controllo locale di malattia (LC) e la sopravvivenza libera da progressione sistemica (PFS).

Disegno dello studio

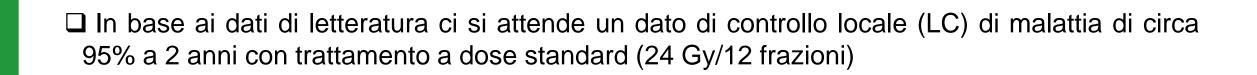
Si tratta di uno studio prospettico interventistico a singolo braccio di fase II, per pazienti affetti da Linfoma non Hodgkin ad istologia marginale in stadio iniziale, a localizzazione nodale ed extranodale, candidati a trattamento radioterapico esclusivo.

ENDPOINT PRIMARIO:

Controllo locale di malattia a 2 anni

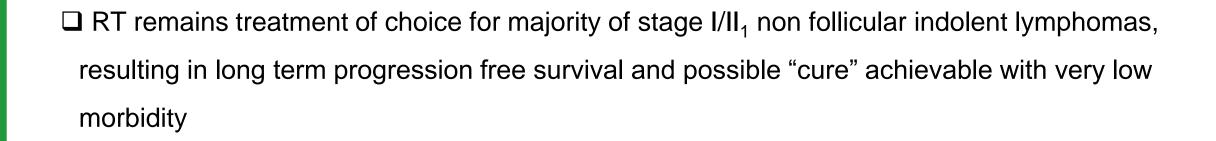
ENDPOINT SECONDARI:

Sopravvivenza globale a 2 anni Sopravvivenza libera da malattia a 2 anni



Considerazioni Statistiche

- ☐ Assumendo un follow-up minimo di almeno 2 anni per ogni singolo paziente arruolato nello studio, sarà necessario arruolare 93 pazienti per raggiungere un obiettivo di non inferiorità del 10% (dato attuariale minimo per rispettare tale obiettivo: 91%) in termini di LC a 2 anni, con un errore alpha del 5% ed una potenza statistica del 95%.
- ☐ I costi stimati per la conduzione di tale studio (incluse le spese di assicurazione), in un numero massimo di 20 centri FIL, ammonterebbe a circa 75.000 Euro


Conclusions

□ LDRT seems to be a safe and interesting solution, particularly for MALT lymphomas.

Prospective studies are ongoing to confirm this assumption