



# Leucemia Linfatica Cronica Terapia di I linea

### **Lorella Orsucci**

S.C. Ematologia AOU Città della salute e della Scienza di Torino Presidio Molinette

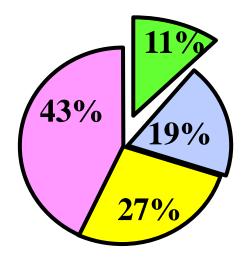




### **EPIDEMIOLOGIA**

### Leucemia cronica più frequente nel mondo occidentale

- incidenza 4/100.000 anno
- età > di 80 anni 30/100.000 anno
- età mediana alla diagnosi 72 anni

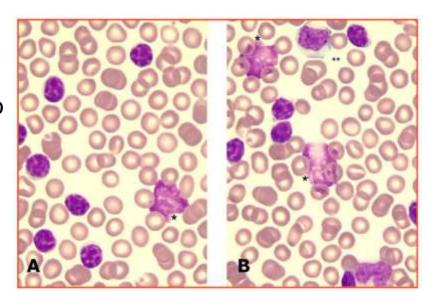

### INCIDENZA DI LLC PER FASCIA D'ETA'

< 54 aa 11%

55-64 aa 19% dei casi

65-74 aa 27% dei casi

> 75 aa 43% dei casi




### **DIAGNOSI**

 linfociti B > 5000/mmc sangue periferico per almeno tre mesi e dimostrazione di clonalità in citoflussimetria

#### morfologia tipica:

- piccoli linfociti maturi con scarso citoplasma, nucleo denso senza nucleoli evidenti e qualche aggregato cromatinico
- linfociti grandi e prolinfociti < 55%, una presenza di prolinfociti > 10% sembra indicare un una forma più aggressiva (con NOTCH1 o alterazioni di TP53)
- ombre di Gumprecht



#### **Immunofenotipo**

CD5+, CD19+, CD23+, ridotta espressione delle catene leggere K o lambda CD 200 positive, CD20 e CD79b poco espressi

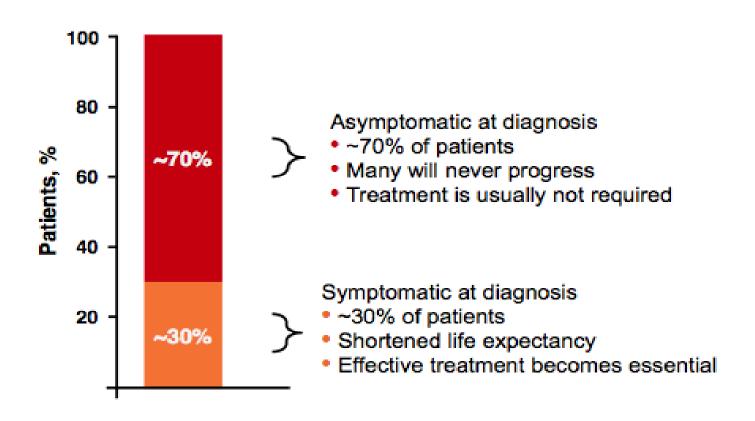
# Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia

Michael Hallek, Bruce D. Cheson, Daniel Catovsky, Federico Caligaris-Cappio, Guillermo Dighiero, Hartmut Döhner, Peter Hillmen, Michael Keating, Emili Montserrat, Nicholas Chiorazzi, Stephan Stilgenbauer, Kanti R. Rai, John C. Byrd, Barbara Eichhorst, Susan O'Brien, Tadeusz Robak, John F. Seymour and Thomas J. Kipps

#### Obligatori prima di decidere di iniziare un trattamento

- Anamnesi e visita clinica con valutazione delle adenopatie superficiali
- Emocromo con formula leucocitaria
- ematochimici con creatinina, LDH, bilirubina, dosaggio Ig
- Test di Coombs
- Markers epatite HBV, HCV, CMV e HIV.
- Rx torace 2P ed ecografia addome completo
- TAC collo, torace ed addome se clinicamente indicata

| <b>RAI STAGING</b> | SYSTEM |
|--------------------|--------|
|--------------------|--------|


| stage     | Rai mod. stage<br>(risk) | Clinical characteristics                                                                          | median<br>survival<br>(years) |
|-----------|--------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|
| 0         | Low                      | only lymphocytosis in the peripheral blood and bone marrow infiltration (>30%)                    | > 10                          |
| I<br>II   | Intermediate             | presence of lymphadenopathies presence of hepatosplenomegaly                                      | 6                             |
| III<br>IV | High                     | presence of anemia (Hb <11 g/dl)<br>presence of thrombocytopenia (PLTs <100 x 10 <sup>9</sup> /L) | 2                             |

### **BINET STAGING SYSTEM**

| stage | Clinical characteristics                                                                 | median<br>survival<br>(years) |
|-------|------------------------------------------------------------------------------------------|-------------------------------|
| Α     | Hb ≥10 g/dL, platelets ≥100 x $10^9$ /L, and up to 2 lymphoid sites involved             | > 7                           |
| В     | Hb ≥10 g/dL, platelets ≥100 x $10^9$ /L, and >2 lymphoid sites involved                  | < 5                           |
| С     | Hb ≤ 10 g/dL, platelets ≤100 x $10^9$ /L or both irrespective of lymphoid sites involved | < 2                           |

involved sites: head and neck, including the Waldeyer ring, axillae, groins, palpable spleen, palpable liver

# La maggior parte dei pazienti non necessita di terapia



# IWCLL 2017 revised guidelines indications for treatment

At least one of the following criteria should be met:

- 1) progressive marrow failure (development or worsening of anemia & / or thrombocytopenia)
- 2) massive splenomegaly (at least 6 cm below the left costal margin) or progressive or symptomatic splenomegaly
- massive nodes (at least 10 cm in longest Φ) or progressive or symptomatic lymphadenopathy (development of enlarged nodes or >50% increase in longest diameter)

# IWCLL 2017 revised guidelines indications for treatment

- 4) Progressive lymphocytosis i.e. an increase of >50% over a 2-months period or lymphocyte doubling time (LDT) of <6 months.
  - Patients with initial blood lymphocyte counts of <30.000/µL LDT may require a longer oservation period to determine LDT
  - <u>LDT should not be used as a single parameter to define a treatment indication</u>. Factors contributing to lymphocytosis or lymphadenopathy other than CLL (eg, infections) should be excluded
- 5) Autoimmune anemia and/or thrombocytopenia poorly responsive to corticosteroids or other standard therapy
- 6) Constitutional symptoms, (any one or more) of:
  - a. <u>unintentional weight loss</u> of ≥10% within the previous 6 months;
  - b. <u>significant fatigue</u> (ECOG PS ≥ 2; inability to work or perform usual activities);
  - c. fevers > 38.0° C for ≥ 2 weeks without other evidence of infection;
  - d. <u>night sweats</u> for > 1 month without evidence of infection

### Biomarker: variable that associates with disease outcome



Host Factors: Age, fitness) sex, etc.



**Disease Markers: Stage**, lymphocyte count, **LDT**, etc



Ag expression: CD38, Zap70, CD49d, etc

Serology: Beta2M, TK, LDH, sCD23, etc



Genetics: del17p, TP53 mutation, del11q22, del13q14, trisomy 12, NOTCH1 mutation, SERB1 mutation, etc

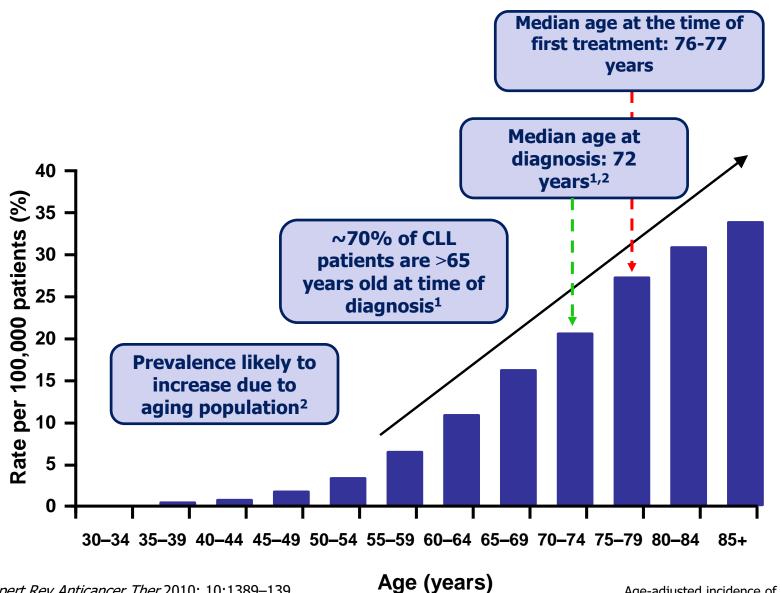


Biology Markers: IGVH-sequence, BCR-structure

# Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia

Michael Hallek, Bruce D. Cheson, Daniel Catovsky, Federico Caligaris-Cappio, Guillermo Dighiero, Hartmut Döhner, Peter Hillmen, Michael Keating, Emili Montserrat, Nicholas Chiorazzi, Stephan Stilgenbauer, Kanti R. Rai, John C. Byrd, Barbara Eichhorst, Susan O'Brien, Tadeusz Robak, John F. Seymour and Thomas J. Kipps

### **Prognostic factors in daily practice:**


- RAI e BINET stages help stratify patients according to the disease risk.

The most relevant prognostic parameters are **IGHV** mutational status, serum **B2-microglobulin**, and the presence of **del(17p) and/or TP53 mutations**. <u>Usually, high-risk CLL is defined, at least in part, by a genetic aberration of the **TP53** gene (i.e. del(17p) or **TP53** mutation).</u>

- The **assessment of both del(17p) and TP53 mutation** has prognostic and predictive value and should guide therapeutic decisions in routine practice.
- As additional genetic abnormalities may be acquired during the course of the disease, genetic analyses (in particular for del(17p)/TP53 mutations) should be repeated prior to any subsequent, second- or third-line of treatment.

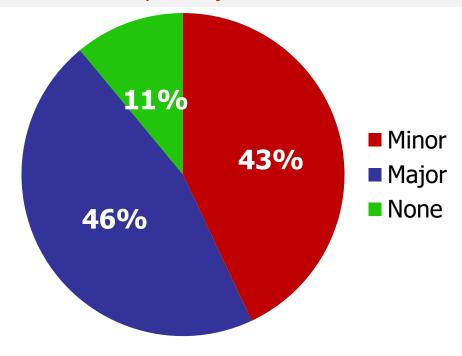


# **CLL** is a disease of the elderly



# Most CLL patients have comorbidities at time of diagnosis

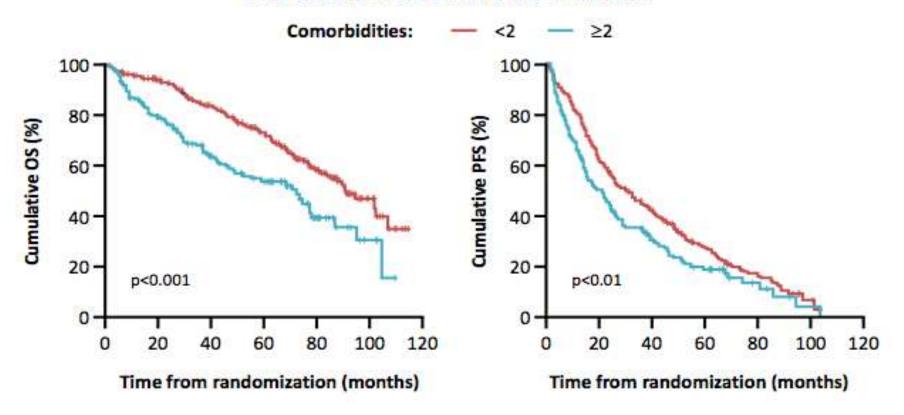
# Retrospective Review of Unselected, Newly Diagnosed Patients with CLL (n=373, between january 1995-December 2006) at Mayo Clinic


#### Major comorbid conditions

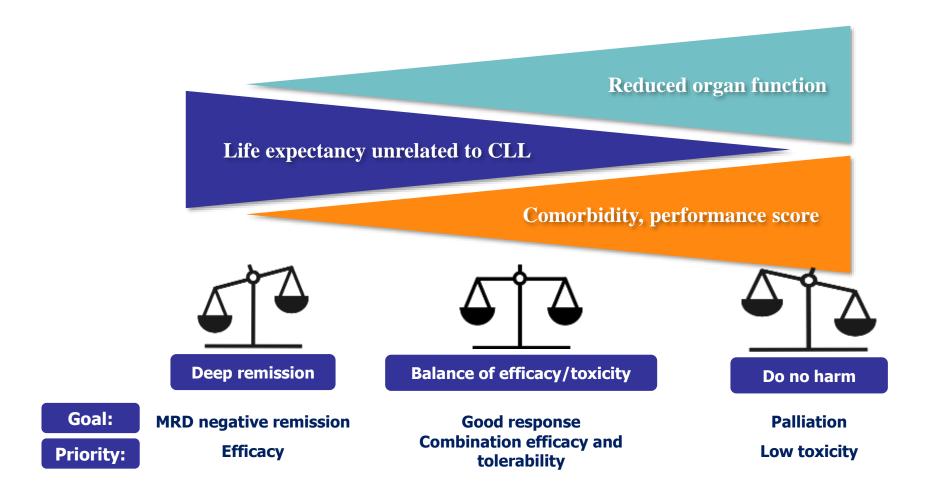
- CAD/Perpheral vascular disease 16,1%
- Cerebrovascular disease (stroke, TIA) 5,6%
- Heart (cardiomyopathy, valvular disease, atrial fibrillation) 13,1%
- Diabetes Mellitus (DM) 11%
- Respiratory 7%
- Malignancy prior to CLL (any) 13,9%
- At least one major comorbidity 46,1%

#### Other

- Hypertension 46,1%
- Rheum/joint 44,5%
- Hyperlipidemia 33,5%


- .......




Nearly 90% of CLL patients had ≥1 comorbid condition

# Le comorbidità si associano ad una prognosi peggiore

#### Patients with CLL (N=555) on first-line treatment with FC, F or Clb from CLL4 and CLL5 studies



# Determining the goals of treatment for older patients with CLL



- 1. Gribben JG. Expert Rev Anticancer Ther 2010; 10:1389–94.
- 2. Shanafelt T. Hematology Am Soc Hematol Educ Program 2013:158–167.

#### **Systems Assessed**

Cardiac

Vascular

Hematological

Respiratory

Ophthalmological and ORL

Upper gastrointestinal

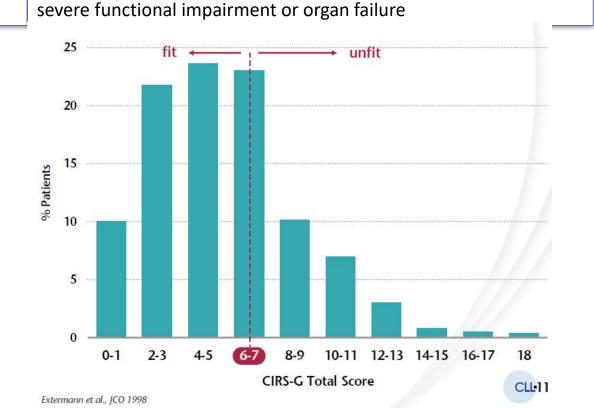
Lower gastrointestinal

Hepatic and pancreatic

Renal

Genitourinary

Musculoskeletal and tegumental


Neurological

Endocrine, metabolic, breast

**Psychiatric** 

#### **Total score:**

# Severity rating in the CIRS scoring system No problem affecting that system Current mild problem, does not interfere with normal activity or past significant problem Interferes with normal activity and/or requires therapy Severe problem and/or constant and significant disability and/or hard to control chronic problem Extremely severe problem and/or treatment is urgent and/or



# SIOG recommendation for categorization of elderly patients with CLL according

#### Robust/Fit

**Vulnerable/Unfit** 

**Terminally ill** 

Normal renal function

AND

No/minor comorbidity

**AND** 

Lack of geriatric impairments

Suitable for intensive therapy

THERAPY (GO)

Abnormal renal function

OR

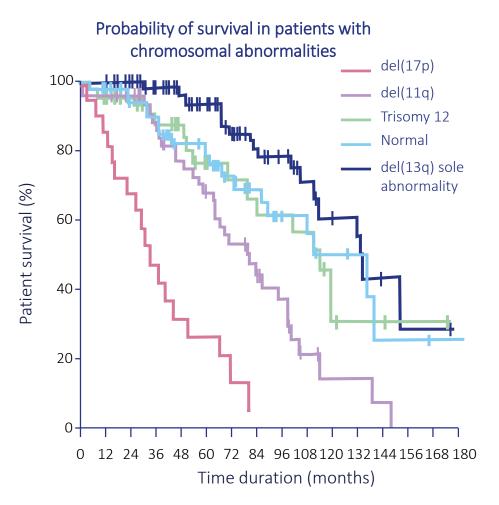
Moderate/severe comorbidity or multimorbidity

OR

Geriatric impairments

Age adjusted life expectancy unrelated to CLL <3 months

Unsuitable for intensive therapy


ADAPTED THERAPY (SLOW)

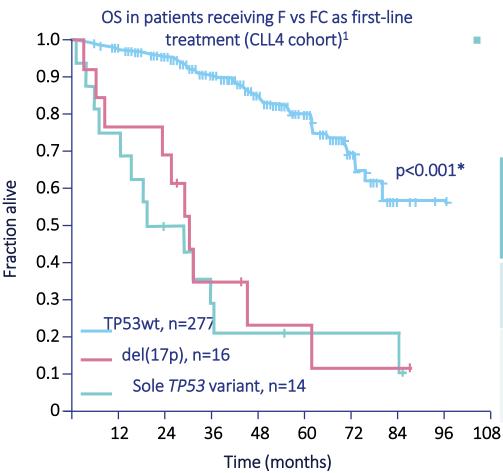
Unsuitable for antileukemic therapy

BEST SUPPORTIVE CARE (NO)



# TP53 aberrations are associated with a poorer outcome than many other genetic mutations in CLL




 TP53 aberrations are associated with one of the poorest OS rates and the shortest times to treatment compared with other genetic/chromosomal abnormalities or clinicobiological features

| Variable                         | HR for death (CI)                    |
|----------------------------------|--------------------------------------|
| del(17p)                         | 8.08 (4.24–15.40)                    |
| No del(11q)<br>del(11q)          | 2.04 (1.56–2.67)<br>1.12 (0.74–1.69) |
| Binet stage:<br>B vs A<br>C vs A | 1.27 (0.76–2.13)<br>3.77 (1.64–8.66) |

Cox regression analysis of survival time from diagnosis

CI, confidence interval; HR, hazard ratio; OS, overall survival. Döhner, H *et al.* N *Engl J Med* 2000;**343**:1910–6.

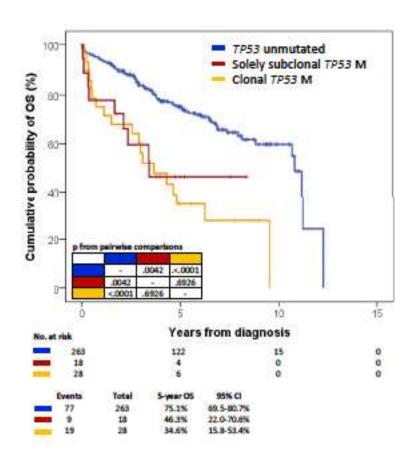
# TP53 variants and del(17p) are independent prognostic markers of poor survival in CLL

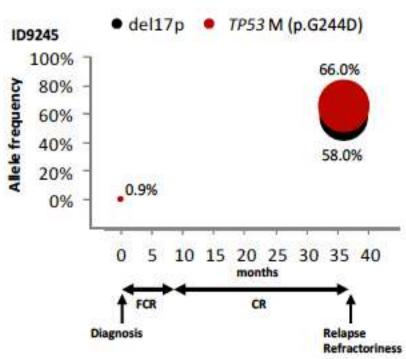


Patients with sole TP53 variants have a similar adverse prognosis as those with  $del(17p)^1$ 

|                       | del(17p)               | Sole<br><i>TP53</i><br>variant | wt |
|-----------------------|------------------------|--------------------------------|----|
| Median OS<br>(months) | 19.2                   | 30.2                           | NR |
| HR <sup>†</sup>       | 2.31<br>(p=0.029)<br>* | 7.24<br>(p<0.001)<br>*         | -  |

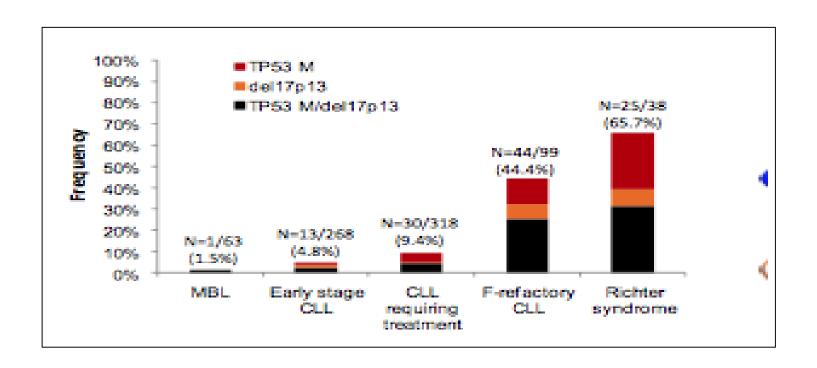



<sup>\*</sup>del(17p) and sole *TP53* variant versus wt; <sup>†</sup>Multivariate Cox regression analysis of OS.


F, fludarabine; FC, fludarabine, cyclophosphamide; NR, not reached.

<sup>1.</sup> Zenz T, et al. J Clin Oncol 2010;28:4473-9.

# Small TP53 mutated subclones have the same unfavorable prognostic impact as clonal TP53 defects



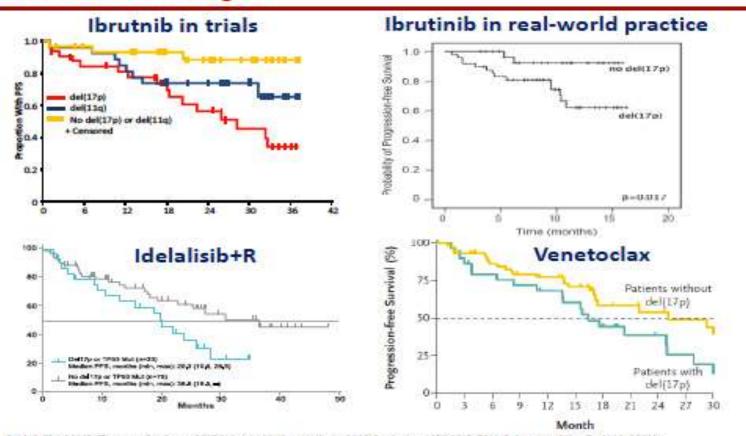





# **Delezione 17p e TP53**

### Più frequenti con la progressione della malattia

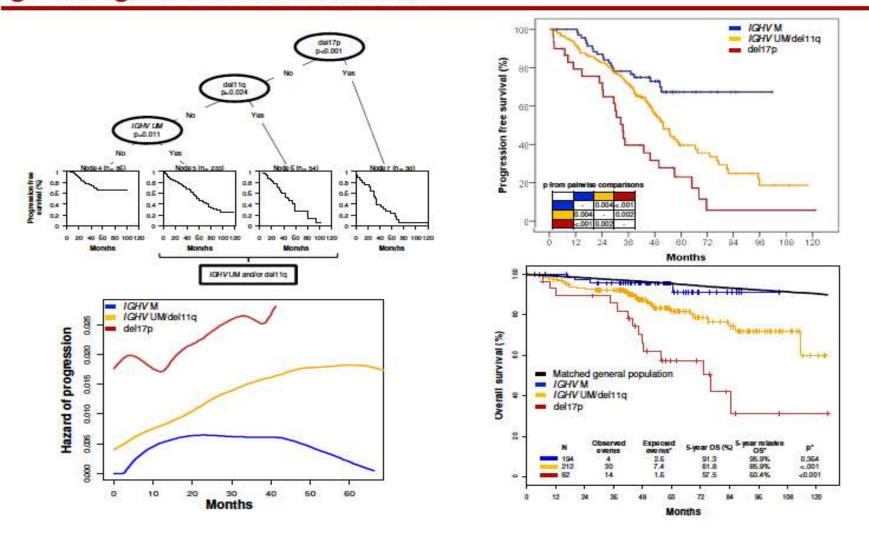



# Chemoimmunotherapy (CIT) vs novel agents in TP53 disrupted CLL

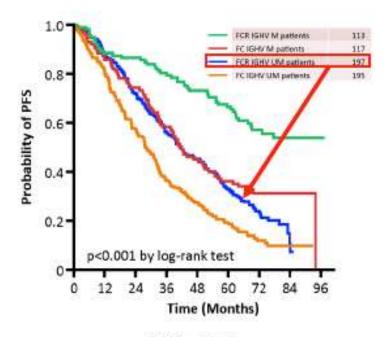


Badoux Blood 2011; Fisher J Clin Oncol 2011; O'Brien, Lancet Oncol 2016; Sharman ASH 2014; Byrd ASH 2015; Stilgenbauer, Lancet Oncol 2016; Jones, EHA 2016

## TP 53 e nuovi farmaci


# TP53 disruption is a prognostic biomarker in CLL treated with novel agents

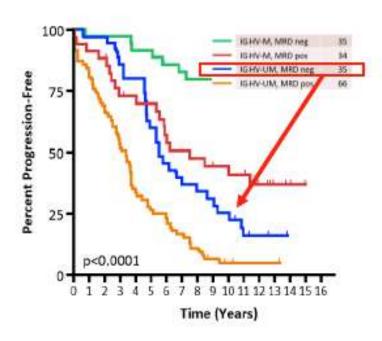



Byrd JC, Blood 2015; Thompson PA, Cancer 2015; Winqvist M, Haematologica 2016; Barrientos, ASCO, 2015, 7011; Roberts, et al New Engl J Med 2016

# IGHV mutated patients devoid of del17p and del11q gain the greatest benefit from FCR



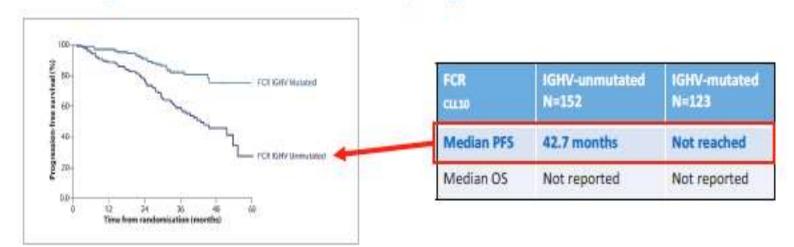


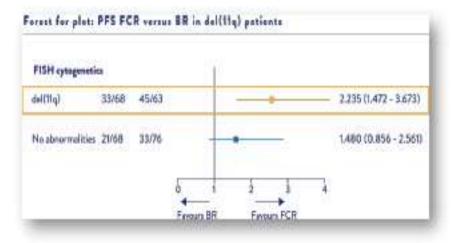

## PFS by IGHV after front-line FCR: FCR300 and CLL8 trials



IGVH mutated 54% Prog-free @ 13 yrs

curve plateaued beyond 10.4 yrs

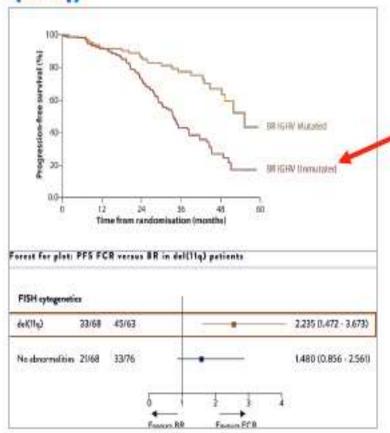

Thomson et al., Blood 2015




IGVH mutated >50% Prog-free @ 6yrs

Fisher et al., Blood 2015

# FCR PFS by unmutated IGHV or del(11q): CLL 10

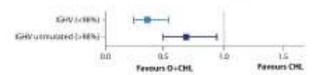





| FCR<br>CLLID | Del(11q) present<br>N=68 | All patients<br>N=282 |
|--------------|--------------------------|-----------------------|
| Median PFS   | 37.8 months              | 55.2 months           |
| Median OS    | Not reported             | Not reported          |

Eichhorst B, et al. Lancet Oncol 2016; 17(7): 925-42.

# CLL 10: BR PFS by unmutated IGHV or del(11q)

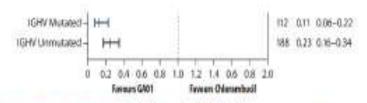



| BR<br>CLLIA | IGHV-unmutated<br>N=183 | IGHV-mutated<br>N=87 |
|-------------|-------------------------|----------------------|
| Median PFS  | 33.6 months             | 55.4 months          |
| Median OS   | Not reported            | Not reported         |

| BR<br>CLID | Del(11q) present<br>N=63 | All patients<br>N=279 |
|------------|--------------------------|-----------------------|
| Median PFS | 25.3 months              | 41.7 months           |
| Median OS  | Not reported             | Not reported          |

### CLL 11: Chl + Ofatumumab efficacy by IGHV mutational status

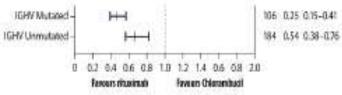
Treatment Effect on PFS by IGHV status - (HR, 95% CI)




| O+Clb vs Clb<br>Complement-1                        | TANKA MARKA SALAMAN SA |                                                                                              |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Reduction in risk of PD or<br>death with O+Ob vs Ob | status                                                                                                         | th O+Clb vs Clb regardless of IGHV<br>esting outcomes are reduced in<br>IGHV vs mutated IGHV |

Hilmen P. et al. Lancot 2015; 385: 1873-83.

#### CLL 11: Chl + Obinutuzumab PFS is decreased by unmutated IGHV

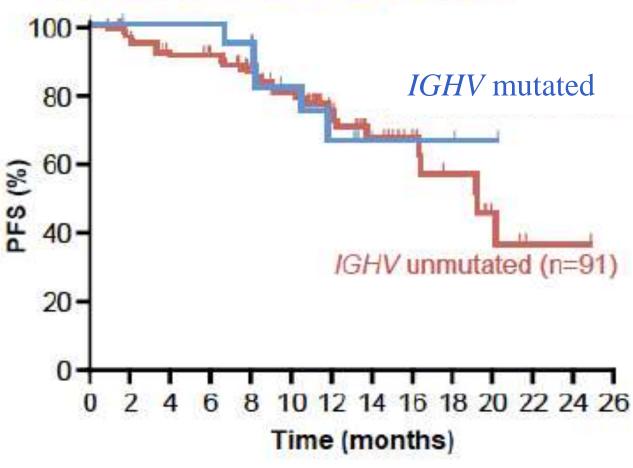

Treatment Effect of G+Clb vs Clb on PFS by IGHV status - (HR, 95% Cl)



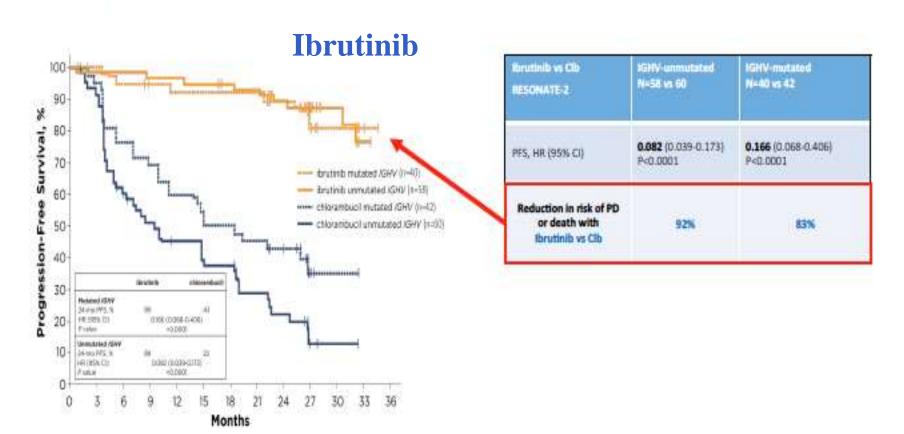
| G+Clb vs Clb<br>a.i.i                                | IGHV-unmutated<br>N= 129 vs 58 | IGHV-mutated<br>N= 76 vs 36 |  |
|------------------------------------------------------|--------------------------------|-----------------------------|--|
| PFS, HR (95% CI)                                     | 0.23 (0.16-0.34)               | 0.11 (0.06-0.22)            |  |
| Reduction in risk of PD or<br>death with G+Ob vs Clb | 77%                            | 89%                         |  |

### CLL: Chl + Rituximab PFS is decreased by unmutated IGHV

#### Treatment Effect of R+Clb vs Clb on PFS by IGHV status - (HR, 95% Cl)



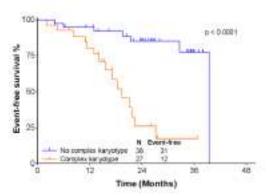

Goods V, et al. N Engl J Med 2014; 370(12): 1101-10.

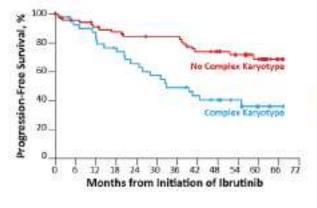

| R+Clb vs Clb<br>CLL1                                  | IGHV-unmutated<br>N= 126 vs 58 | IGHV-mutated<br>N= 70 vs 37 |
|-------------------------------------------------------|--------------------------------|-----------------------------|
| PFS, HR (95% CI)                                      | 0.54 (0.38-0.76)               | 0.25 (0.15-0.41)            |
| Reduction in risk of PD or<br>death with R+Clb vs Clb | 46%                            | 75%                         |

# BCRi are efficacious regardless of IGHV status






# BCRi are efficacious regardless of IGHV status

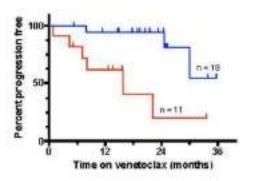


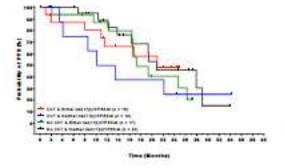

Barr Piet al. Oral presentation at ASH 2016.

# Complex karyotype in the era of novel agents









Ibrutinib PCYC-1102/1103

O'Brien S, et al. ASH 2016

### Venetoclax

Anderson et al, Blood 2017





Idelalisib-R GS 0116/0117

Kreuzer, et al, ASH 2016

# An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data



The International CLL-IPI working group\*

| Variable         | Adverse factor         | Coeff. | HR  | Grading |
|------------------|------------------------|--------|-----|---------|
| TP53 (17p)       | deleted and/or mutated | 1.442  | 4.2 | 4       |
| IGHV status      | Unmutated              | 0.941  | 2.6 | 2       |
| B2M, mg/L        | > 3,5                  | 0.665  | 2.0 | 2       |
| Clinical stage   | Binet B/C or Rai I-IV  | 0.499  | 1.6 | 1       |
| Age              | > 65 years             | 0.555  | 1.7 | 1       |
| Prognostic Score |                        |        |     | 0-10    |

Low risk 0-1
Intermediate risk 2-3
High risk 4-6
Very high risk 7-10

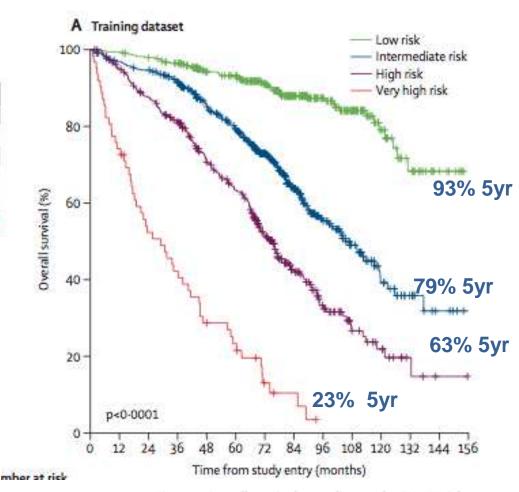
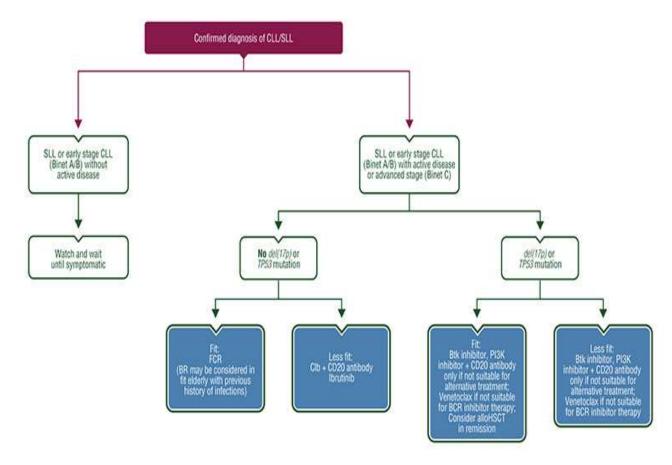




Figure 1: Overall survival according to the CLL-IPI risk groups

# ESMO CLL Guidelines in frontline setting – Update June 2017



altoriSCT, allogeneic haematopoietic stem cell transplantation; BCR, B-cell receptor; BK, Bruton's tyrosine kinase; BR, bendamustine plus rituximato; Ctb, chlorambucil; CLL, chronic lymphocytic leukaemia; FCR, fludarabine, cyclophosphamide and rituximato; PGK, phosphatidylinositide 3-kinase; SLL, small lymphocytic leukaemia; TP53, tumour protein p53



# Comprehensive NCCN Guidelines Version 3.2018

Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

NCCN Guidelines Index
Table of Contents
Discussion

#### First-line therapy

- Frail patient with significant comorbidity (not able to tolerate purine analogs)
- > Preferred regimens
  - ♦ Chlorambucil + obinutuzumab (category 1)
  - ♦ Ibrutinib<sup>c</sup> (category 1)
  - ♦ Chlorambucil + ofatumumab
  - ◊ Chlorambucil + rituximab
- Other recommended regimens
  - ♦ High-dose methylprednisolone (HDMP) + rituximab (category 2B)
  - ♦ Obinutuzumab (category 2B)
  - ♦ Chlorambucil (category 3)
  - ♦ Rituximab (category 3)

#### SUGGESTED TREATMENT REGIMENSa,b

CLL/SLL without del(17p)/TP53 mutation (alphabetical by preference and category)

#### First-line therapy

- Age ≥65 y and younger patients with significant comorbidities
- Preferred regimens
  - ♦ Chlorambucil + obinutuzumab (category 1)
  - ♦ Ibrutinib<sup>c</sup> (category 1)
  - ♦ Bendamustine (70 mg/m² in cycle 1 with escalation to 90 mg/m² if tolerated) ± CD20 monoclonal antibody<sup>d</sup>
  - ◊ Chlorambucil + ofatumumab
  - ♦ Chlorambucil + rituximab
- Other recommended regimens
  - ♦ HDMP + rituximab (category 2B)
  - ♦ Obinutuzumab (category 2B)
  - ♦ Chlorambucil (category 3)
  - ♦ Rituximab (category 3)

#### First-line therapy

- Age <65 y without significant comorbidities</li>
  - > Preferred regimens
    - ◊ FCR<sup>f</sup> (fludarabine,<sup>g</sup> cyclophosphamide, rituximab<sup>h</sup>) (category 1)<sup>d</sup>
    - ♦ Bendamustine ± CD20 monoclonal antibody<sup>d</sup>
    - ◊ Ibrutinib<sup>c</sup>
- > Other recommended regimens
  - ◊ FR<sup>f</sup> (fludarabine,<sup>g</sup> rituximab)<sup>i</sup>
  - ♦ HDMP + rituximab (category 2B)
  - PCR (pentostatin, cyclophosphamide, rituximab) (category 3)

# Chronic lymphocytic leukaemia

Michael Hallek, Tait D Shanafelt, Barbara Eichhorst

|                  | No TP53 aberration                                                                                                          | TP53 aberration                                                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Physically fit   | Fludarabine plus cyclophosphamide plus rituximab (age < 65 years); or bendamustine plus rituximab (age > 65 years)          | Ibrutinib or idelalisib plus rituximab or<br>venetoclax (if ibrutinib therapy is not<br>suitable because of comorbidities or<br>comedication) |
| Physically unfit | Chlorambucil plus obinutuz umab; or chlorambucil plus of atumumab; or chlorambucil plus rituximab; or ibrutinib monotherapy | Ibrutinib or idelalisib plus rituximab or<br>venetoclax (if ibrutinib is not suitable<br>because of comorbidities or<br>comedication)         |

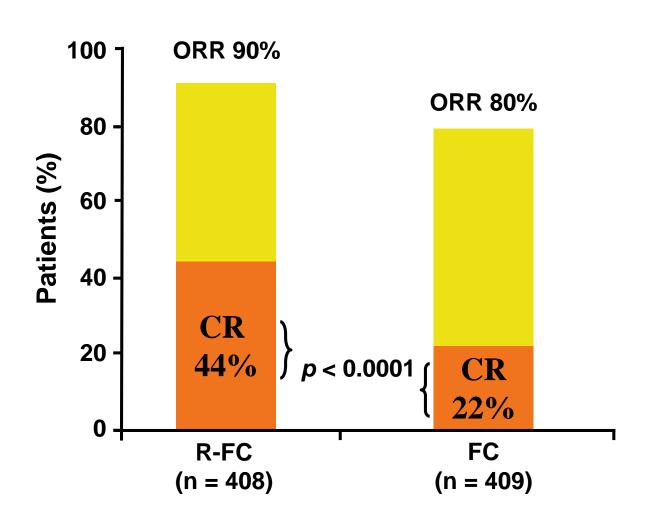
www.thelancet.com Published online February 21, 2018 http://dx.doi.org/10.1016/50140-6736(18)30422-7



#### GCLLSG CLL8 TRIAL: FC vs R-FC



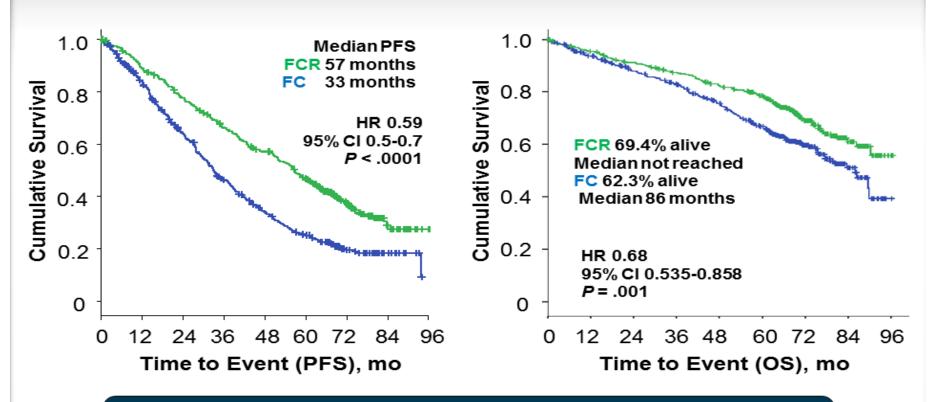
Hallek M et al. Lancet 2010; 376;1164–1174.


# Criteri di inclusione CLL8



Età > 18 anni ECOG 0/1 GFR > 70 ml/min CIRS < 6

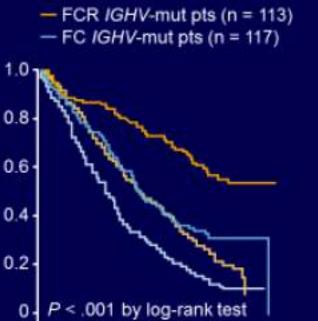
| Median age, years (range) | 61 |
|---------------------------|----|
| Aged ≥ 65 years, %        | 28 |
| Aged ≥ 75 years, %        | 2  |
| Median ECOG PS            | 0  |


## Response: FCR better than FC



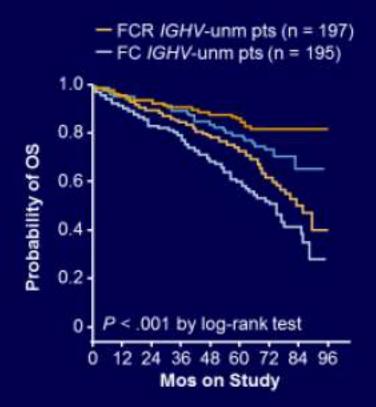


Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial


## Update PFS CLL8 Trial: F/U 5.9 years



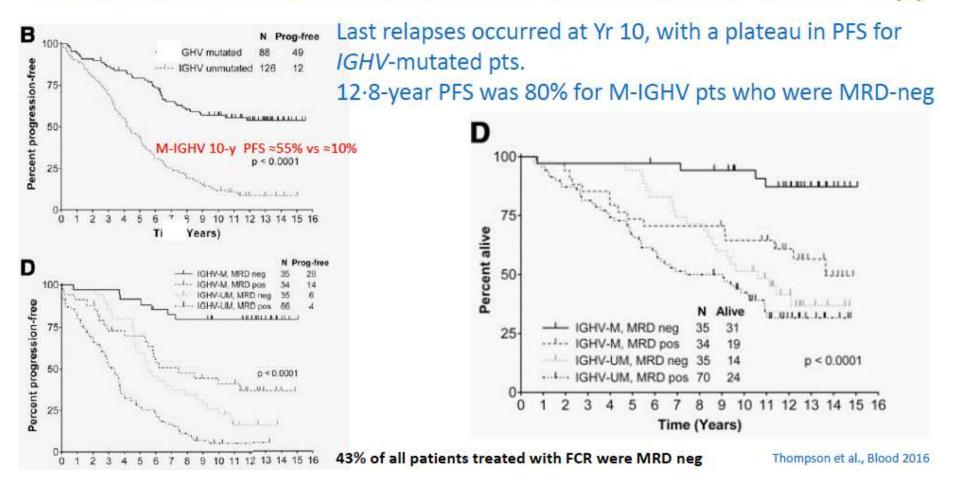
Despite indolent and recurrent nature of CLL, efficient first-line treatment is important


Fisher K, et al. Blood. 2012;120: Abstract 435.[49]

## CLL8: Plateau in PFS and OS With FCR as Initial Therapy for CLL



12 24 36 48 60 72 84 96


Mos on Study



Fischer K, et al. Blood. 2016;127:208-215.

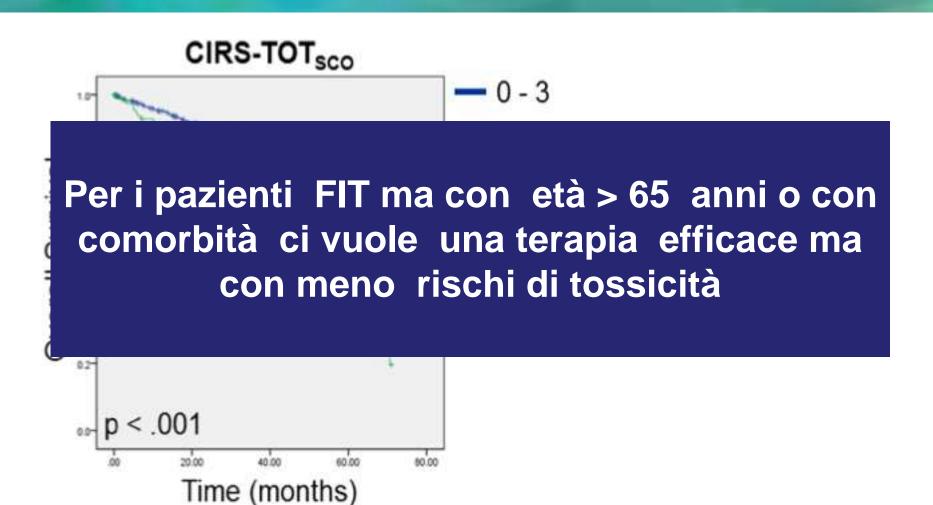
Probability of PFS

### FCR300 Phase II Trial: Plateau in PFS With FCR as 1st line therapy



# CLL8 Efficacy in older vs younger patients

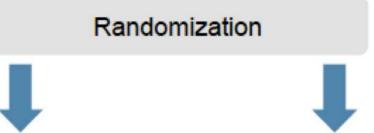
|                  | R-                      | FC                      |
|------------------|-------------------------|-------------------------|
|                  | < 65 years<br>(n = 282) | ≥ 65 years<br>(n = 126) |
| CR (%)           | 45                      | 43                      |
| ORR (%)          | 89                      | 93                      |
| PFS at 3 yrs (%) | 64                      | 68                      |
| OS at 3 yrs (%)  | 87                      | 88                      |


# Incidence Of Grade 3 And 4 Adverse Events

|                                                                  | Chemotherapy<br>(n=396) | Chemoimmunotherapy<br>(n=404) | p value  | <65 years<br>(n=560) | ≥65 years<br>(n=240) | p value |
|------------------------------------------------------------------|-------------------------|-------------------------------|----------|----------------------|----------------------|---------|
| Total number of patients with at least one grade<br>3 or 4 event | 249 (63%)               | 309 (76%)                     | <0.0001  | 375 (67%)            | 183 (76%)            | 0-009   |
| Haematological toxicity                                          | 157 (40%)               | 225 (56%)                     | < 0.0001 | 254 (45%)            | 128 (53%)            | 0.04    |
| Neutropenia                                                      | 83 (21%)                | 136 (34%)                     | <0.0001  | 146 (26%)            | 73 (30%)             | 0-21    |
| Leucocytopenia                                                   | 48 (12%)                | 97 (24%)                      | <0.0001  | 106 (19%)            | 39 (16%)             | 0-37    |
| Thrombocytopenia                                                 | 44 (11%)                | 30 (7%)                       | 0-07     | 50 (9%)              | 24 (10%)             | 0-63    |
| Anaemia                                                          | 27 (7%)                 | 22 (5%)                       | 0.42     | 35 (6%)              | 14 (6%)              | 0-82    |
| Autoimmune haemolytic anaemia                                    | 4 (1%)                  | 3 (<1%)                       | 0.69     | 4 (<1%)              | 3 (1%)               | 0.46    |
| Tumour lysis syndrome                                            | 2 (<1%)                 | 1 (<1%)                       | 0.55     | 3 (<1%)              | 0                    | 0-26    |
| Cytokine release syndrome                                        | 0                       | 1 (<1%)                       | 0-32     | 1 (<1%)              | 0                    | 0.51    |
| infections, total                                                | 85 (21%)                | 103 (25%)                     | 0.18     | 127 (23%)            | 61 (25%)             | 0-4     |
| nfections, not specified                                         | 68 (17%)                | 83 (21%)                      | 0-19     | 104 (19%)            | 46 (19%)             | 0.84    |
| Bacterial infection                                              | 5 (1%)                  | 11 (3%)                       | 0.14     | 6 (1%)               | 10 (4%)              | 0.004   |
| /iral infection                                                  | 17 (4%)                 | 17 (4%)                       | 0.95     | 26 (5%)              | 8 (3%)               | 0-4     |
| Fungal infection                                                 | 1 (<1%)                 | 3 (<1%)                       | 0.33     | 3 (<1%)              | 1 (<1%)              | 0.83    |
| Parasitic infection                                              | 0                       | 1(<1%)                        | 0-32     | 0                    | 1 (<1%)              | 0.13    |

Data are number (%), unless otherwise indicated. Chemotherapy=fludarabine and cyclophosphamide. Chemoimmunotherapy=fludarabine, cyclophosphamide, and rituximab.

Table 6: Incidence of grade 3 and 4 adverse events


## Incidence Of Grade 3 And 4 Adverse Events



#### CLL10 STUDY: FCR VS BR IN FRONT-LINE

Design: Phase III non-inferiority trial

Patients with untreated, active CLL without del(17p) and good physical fitness (CIRS ≤ 6, creatinine clearance ≥ 70 ml/min)

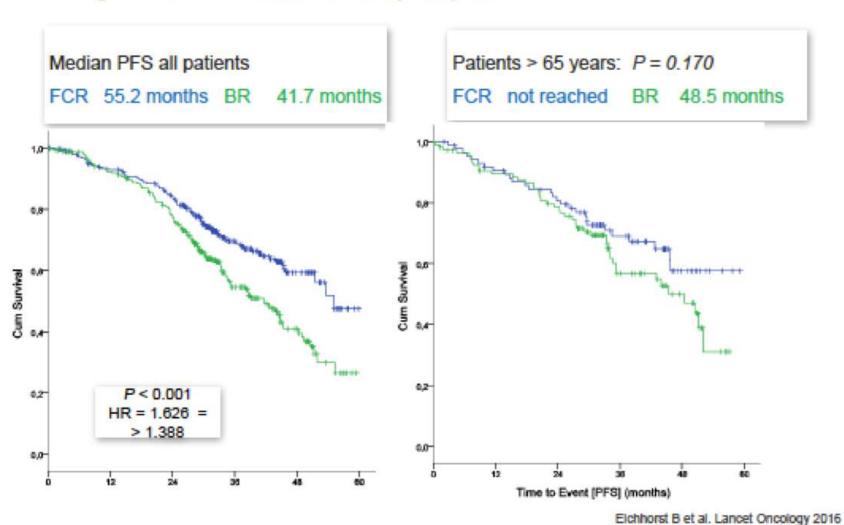


#### FCR

Fludarabine 25 mg/m² i.v., days 1-3 Cyclophosphamide 250 mg/m², days 1-3, Rituximab 375 mg/ m² i.v day 0, cycle 1 Rituximab 500 mg/m² i.v. day 1, cycle 2-6

#### BR

Bendamustine 90mg/m² day 1-2 Rituximab 375 mg/m² day 0, cycle 1 Rituximab 500 mg/m² day 1, cycle 2-6


#### **CLL10 STUDY: FCR VS BR IN FRONTLINE**

ITT Best Response according to IWCLL & MRD

| Response       | FCR (%)<br>n=282 | BR (%)<br>n=279 | p value            |
|----------------|------------------|-----------------|--------------------|
| CR (CR + CRi)  | 39.7             | 30.8            | 0.034              |
| ORR            | 95.4             | 95.7            | 1.0                |
| MRD negativity |                  | %(N)<br>282     | BR %(N)<br>n=279   |
| BM at FR       |                  | .6%<br>(282)    | 11.1%<br>(31/279)  |
| PB at FR       |                  | .6%<br>/282)    | 38.4%<br>(107/279) |

#### CLL10 STUDY: FCR VS BR IN FRONT-LINE

ITT Progression-free survival = Primary endpoint



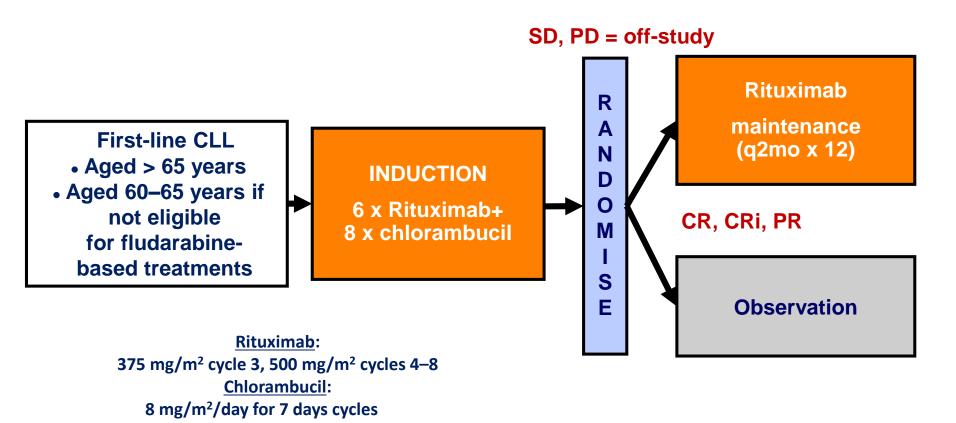
### **CLL10 TRIAL: TOXICITY**

|             |           | FCR (n=279) | BR (n=278) |
|-------------|-----------|-------------|------------|
| Severe      | all       | 35.2        | 27.5       |
| infections  | > 65 only | 47.7        | 20.6       |
| SPM         |           | 49 (18%)    | 35 (12%)   |
| Solid tumor |           | 28 (10%)    | 25 (9%)    |
| Skin tumor  |           | 9 (3%)      | 8 (3%)     |
|             | all       | 12 (4%)     | 2 (1%)     |
| AML/MDS     | > 65 only | 6 (7%)      | 1 (1%)     |
| RT          |           | 5 (2%)      | 8 (3%)     |

### **CLL 10 Conclusioni**

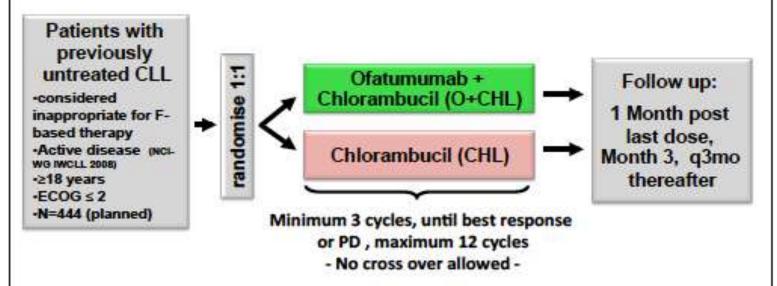
FCR è la terapia standard per il paziente FIT giovane: maggiori CR, MRD negatività e più lungo PFS

Pazienti FIT anziani ( > 65 anni ) hanno maggiori tossicità e maggiori rischi infettivi


Il trattamento BR è da preferire nei pazienti anziani FIT o giovani con precedenti infezioni



## Chlorambucil ± anti-CD20 MoAb (1997-2017)


| Study                   |             | Number of | Total          | Anti-                        | Re                 | esponse ra          | te             |           |        |       |            |
|-------------------------|-------------|-----------|----------------|------------------------------|--------------------|---------------------|----------------|-----------|--------|-------|------------|
|                         |             | No        | Me<br>d<br>age | (m²) /per<br>4 week<br>cycle | or<br>1/14<br>days | cycles<br>delivered | dose of<br>clb | antibody  | CR/CRI | ORR   | PFS        |
| Jaksic et al<br>1997    | Clb mono    | 228       | ??             | 150-180/<br>m2               | Continuo           | ??                  | ??             | None      | ??     | 89.5% | 68<br>(OS) |
| Ral et al<br>2000       | Clb mono    | 193       | 62             | 40mg/m²                      | 1/28               | Up to 12            | ??             | None      | 4%     | 37%   | 14         |
| Elchhorst<br>et al 2009 | Clb mono    | 100       | 70             | 38mg/m²                      | 1/14               | 6.5                 | 0.5mg/kg       | None      | 0%     | 51%   | 18         |
| Hillmen et<br>al 2007   | Clb mono    | 148       | 60             | 40mg/m²                      | 1/28               | 7                   | 515mg          | None      | 2%     | 55%   | 11.7       |
| Knauf et al<br>2009     | Clb mono    | 156       | 66             | 60mg/m <sup>2</sup>          | 1/14               | 6                   | 522mg          | None      | 2%     | 31%   | 8.3        |
| Catovsky<br>et al 2007  | Clb mono    | 387       | 65             | 70mg/m²                      | 7/28               | ??                  | ??             | None      | 7%     | 72%   | 20         |
| Hillmen et<br>al CLL208 | Clb + rftux | 100       | 70             | 70mg/m²                      | 7/28               | 6                   | ??             | Ritux     | 10%    | 84%   | 23.5       |
| Foa et al<br>(Clb+rit)  | Clb + rttux | 85        | 70             | 56mg/m <sup>2</sup>          | 7/28               | 8                   | ~700mg         | Ritux     | 18.9%  | 82.4% | 34.7**     |
| Hillmen et              | Clb         | 226       | 70             | 70mg/m²                      | 7/28               | 6 (12)              | 728mg          | None      | 1%"    | 69%"  | 13.1       |
| al (Compl               | Clb + Ofa   | 221       | 69             | 70mg/m²                      | 7/28               | 6 (12)              | 763mg          | Ofatum    | 14%"   | 82%"  | 22.4       |
| Goede et                | Clb         | 118       | 72             | 38mg/m²                      | 1/14               | 6 (6)               | 384mg          | None      | 0      | 31.4% | 11.1       |
| al (CLL11               | Clb + rttux | 330       | 73             | 38mg/m²                      | 1/14               | 6 (6)               | 396mg          | Rituximab | 7%     | 65.1% | 15.2       |
|                         | Clb + Obin  | 333       | 74             | 38mg/m²                      | 1/14               | 6 (6)               | 366mg          | Oblnutuz  | 20.7%  | 78.4% | 26.7       |

# ML21445: Rituximab plus chlorambucil followed by maintenance for elderly patients with first-line CLL

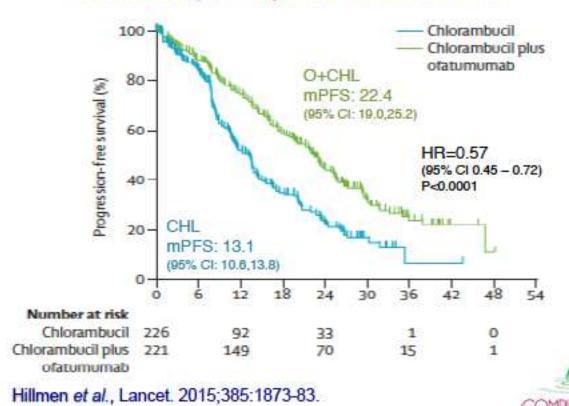


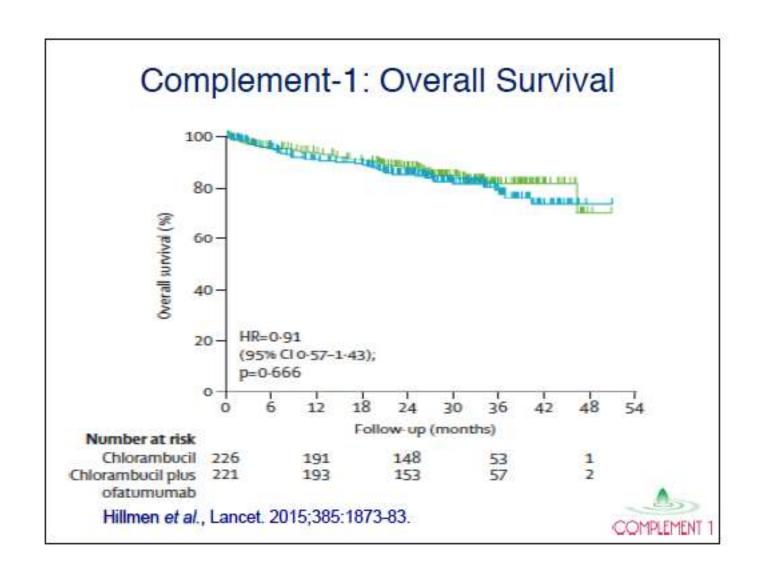
| Complete<br>Remission | Overall Response Rate | Median Age    | Evaluable patients | Grade III-IV<br>Neutropenia<br>% patients |
|-----------------------|-----------------------|---------------|--------------------|-------------------------------------------|
| 16.5%                 | 82.4 %                | 70 (R: 61-84) | 85                 | 19.6                                      |

### COMPLEMENT 1: Ofatumumab in CLL

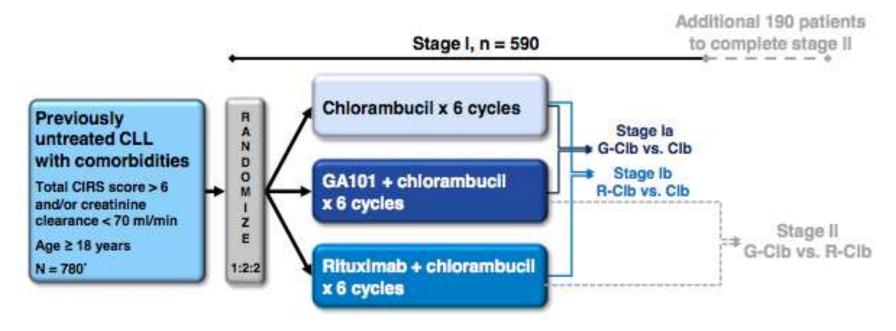


O: cycle 1 d1 300 mg, d8 1000 mg, Cycle 2-12 d1 1000 mg every 28 days


CHL: 10 mg/m<sup>2</sup> d1-7 every 28 days


Dose rationale: evidence of <u>highest ORR and longest PFS</u> with low toxicity compared to any other CHL monotherapy regimen

Hillmen et al., Lancet. 2015;385:1873-83.


### Complement-1: Median PFS (months)

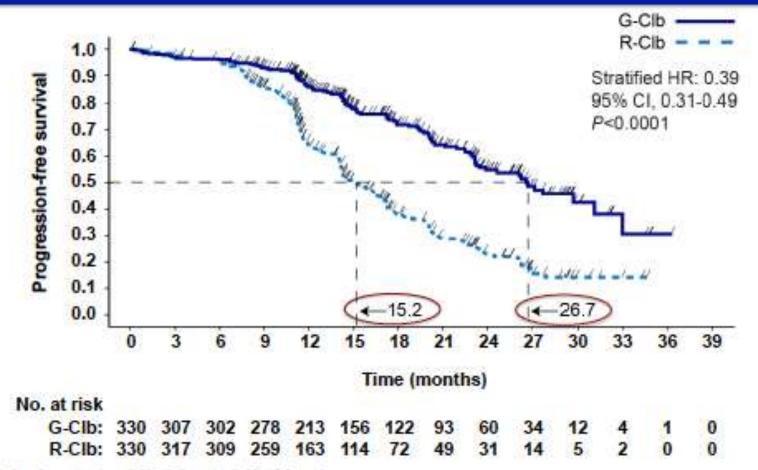
as assessed by an Independent Review Committee





### **CLL 11 study design**




| Primary endpoint    | Investigator-assessed PFS                                                                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secondary endpoints | ORR, CR rate, PR rate, IRC-assessed PFS, response duration, DFS, overall survival, MRD, safety, PK of G-Clb, patient-reported outcomes and symptom burden by EORTC questionnaire |

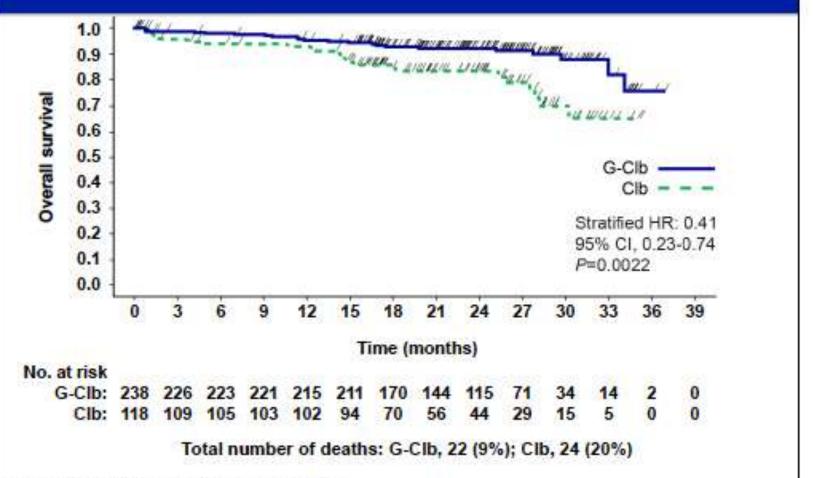
GA101: 1,000 mg Days 1, 8, and 15 Cycle 1; Day 1 Cycles 2–6, every 28 days Rituximab: 375 mg/m² Day 1 Cycle 1, 500 mg/m² Day 1 Cycles 2–6, every 28 days Clb: 0.5 mg/kg Day 1 and Day 15 Cycle 1–6, every 28 days

Patients with progressive disease in the Clb arm were allowed to cross over to G-Clb arm.

<sup>\*</sup> Plus six additional G-Clb patients in safety run-in1

### GCLLSG CLL11 Trial: PFS for G-Clb vs R-Clb




Median observation time: G-Clb, 18.8 months; R-Clb, 18.6 months

Type 1 error controlled through closed test procedure; P value of the global test was <0.0001

Independent Review Committee-assessed progression-free survival (PFS) was consistent with investigator-assessed PFS

Goede et al., N Engl J Med, 2014; 370: 1101-10.

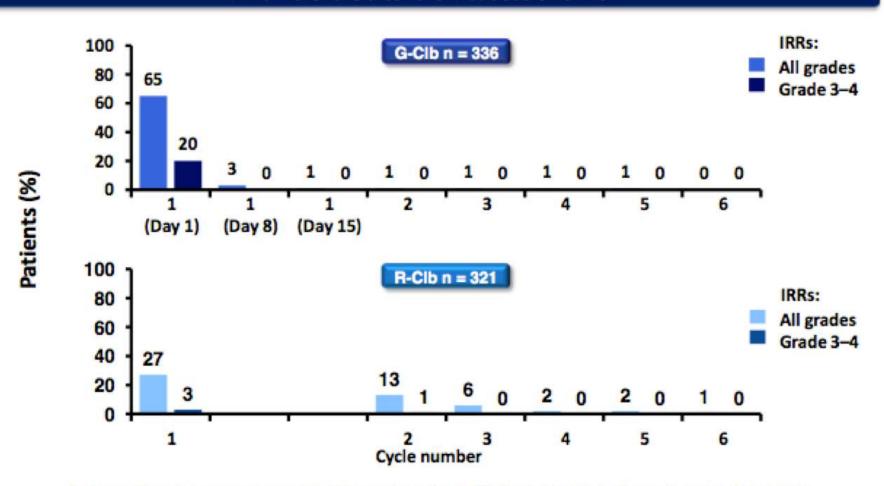
#### GCLLSG CLL11 Trial: Overall survival G-Clb vs Clb



Median observation time: G-Clb, 23.2 months; Clb, 20.4 months No multiplicity adjustment was done for secondary endpoints

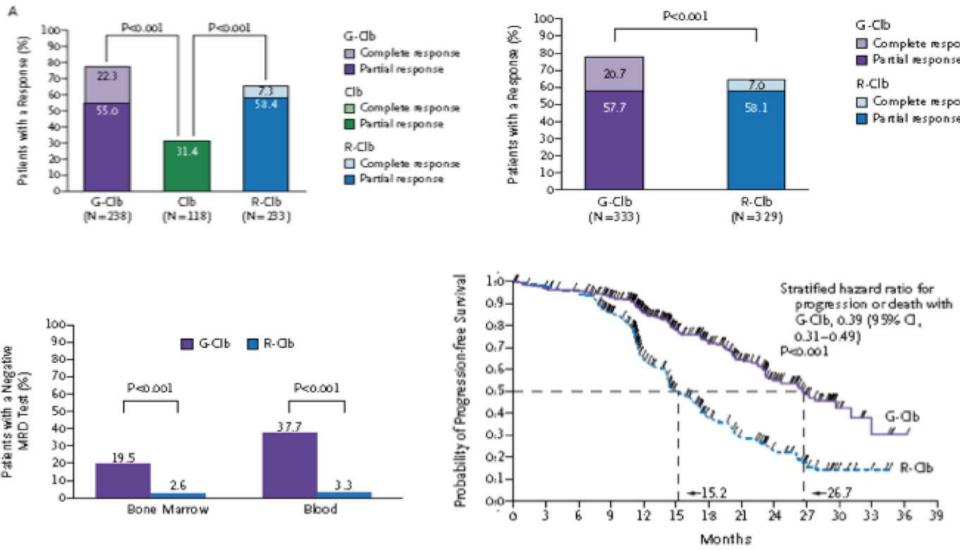
Goede et al., N Engl J Med, 2014; 370: 1101-10.

## **CLL11 - Most frequent AEs (any grade)**


|                  | Patien             | ts, n (%)          |                  | Patien             | ts, n (%)          |
|------------------|--------------------|--------------------|------------------|--------------------|--------------------|
|                  | R-Clb<br>(n = 321) | G-Clb<br>(n = 336) |                  | G-Clb<br>(n = 321) | R-Clb<br>(n = 336) |
| Any AE           | 286 (89)           | 315 (94)           | Abdominal pain   | 10 (3)             | 14 (4)             |
| IRRs             | 121 (38)           | 221 (66)           | Fatigue          | 30 <b>(9)</b>      | 27 (8)             |
| Neutropenia      | 103 (32)           | 128 (38)           | Asthenia         | 25 (8)             | 23 (7)             |
| Thrombocytopenia | 21 (7)             | 48 (14)            | Pyrexia          | 24 (7)             | 29 (9)             |
| Anemia           | 35 (11)            | 37 (11)            | Cough            | 19 (6)             | 25 (7)             |
| Nausea           | 42 (13)            | 40 (12)            | Rash             | 19 (6)             | 8 (2)              |
| Diarrhea         | 24 (7)             | 34 (10)            | Back Pain        | 9 (3)              | 16 (5)             |
| Vomiting         | 22 (7)             | 19 (6)             | Peripheral Edema | 17 (5)             | 11 (3)             |
| Constipation     | 16 (5)             | 28 (8)             |                  |                    |                    |

#### AEs occurring at any time up to clinical cut-off in ≥ 5% of patients are shown

Five patients who were randomized to R-Clb received one infusion of GA101 in error and are included in the safety population for G-Clb and not R-Clb.

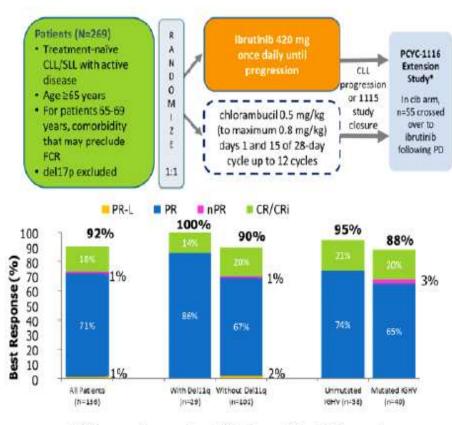

## IRRs by cycle

#### IRRs were rare after the first dose of GA101

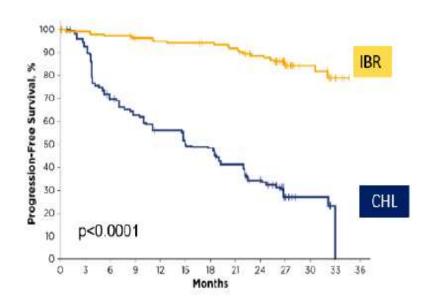


Patients with grade 4 or recurring grade 3 IRRs were discontinued; 7% of patients in the G-Clb arm discontinued due to IRRs IRRs occurring on day 2 (after the amendment to split the first dose for GA101) are included in the figures for day 1.

### **CLL 11 result**







#### **AUTORIZZAZIONE (2017)**

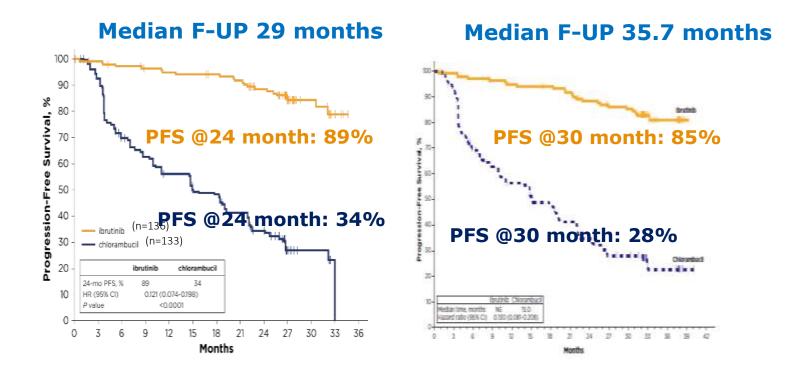
Gazyvaro in associazione a clorambucile è indicato nel trattamento di pazienti adulti affetti da Leucemia linfatica cronica (LLC) non pretrattata e con comorbilità che li rendono non idonei a una terapia a base di fludarabina a dose piena.

# Resonate-2 trial: front-line ibrutinib vs chlorambucil in ≥65 yrs patients with CLL



CR increasing on <u>ibrutinib</u> from 7% at 12 months to 18% with median follow-up of 29 months.




|                     | Ibrutinib<br>(N=136) | Chlorambucil<br>(N=133) |
|---------------------|----------------------|-------------------------|
| Median PFS (months) | NR                   | 15                      |
| PFS at 24 months    | 89%                  | 34%                     |

### **RESONATE-2: Patient Characteristics**

| Characteristic                              | Ibrutinib<br>(n=136) | Chlorambucil (n=133) |
|---------------------------------------------|----------------------|----------------------|
| Median age, years (range) ≥70 years, %      | 73 (65–89)<br>71     | 72 (65–90)<br>70     |
| ECOG performance status, % 0 1 2            | 44<br>48<br>8        | 41<br>50<br>9        |
| Rai stage III or IV, %                      | 44                   | 47                   |
| CIRS score >6, %                            | 31                   | 33                   |
| Creatinine clearance <60 mL/min, %          | 44                   | 50                   |
| Bulky disease ≥5 cm, %                      | 40                   | 30                   |
| β2-microglobulin >3.5 mg/L, %               | 63                   | 67                   |
| Hemoglobin ≤11 g/dL, %                      | 38                   | 41                   |
| Platelet count ≤100 x 10 <sup>9</sup> /L, % | 26                   | 21                   |
| Del11q, %                                   | 21                   | 19                   |
| Unmutated IGHV, %                           | 43                   | 45                   |



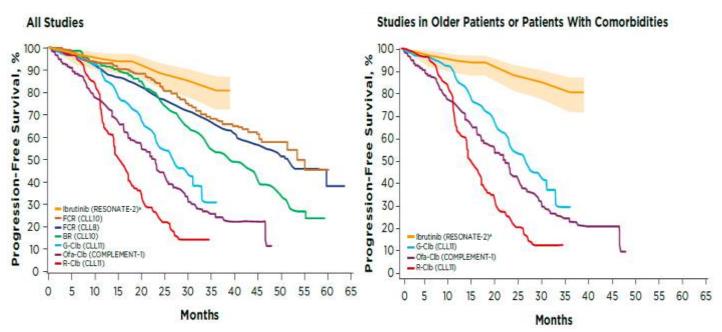
#### **RESONATE-2: PFS over time**



- At 3 years of follow-up significantly longer PFS for ibrutinib (median, not reached vs 15.0 months with chlorambucil), with an 87% reduction in risk of progression or death vs chlorambucil (HR 0.13; 95% CI: 0.081, 0.208)
- Subgroup analysis of PFS revealed benefit was observed across all subgroups



# Ibrutinib Continues to Demonstrate OS Benefit Over Chlorambucil With Longer Follow-Up and Cross-Over

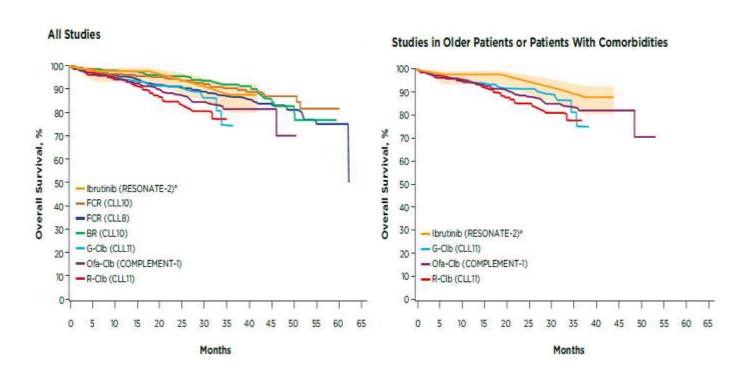

Median F-UP: 29 months



- At median follow-up of 29 months, 55 pts crossed over to ibrutinib from chlorambucil
- Significant OS benefit, even with a high number of patients crossing over to ibrutinib

**Barr et al. ASH 2016 Oral Presentation** 

# Single-agent ibrutinib associated with longer PFS as compared with all CIT regimens




<sup>a</sup>Shaded area represents 95% confidence band with ibrutinib

- Older, less-fit pts treated with ibrutinib experienced a longer PFS than younger, fit pts treated with FCR from CLL8.
- When comparing RESONATE-2 and CLL10 studies (excluding pts with del17p), ibrutinib was associated with improved PFS compared with that for FCR or BR treatment.
- In older pts or those with comorbidities, ibrutinib was associated with improved PFS outcomes relative to those for R-Clb or G-Clb.



# OS outcomes with single-agent ibrutinib compared with all CIT regimens



<sup>a</sup>Shaded area represents 95% confidence band with ibrutinib

- OS outcomes with single-agent ibrutinib appeared comparable or favorable to CIT regimens
- In studies with an older or less fit population, ibrutinib appeared to show more favorable OS relative to Ofa-Clb, R-Clb, and G-Clb.

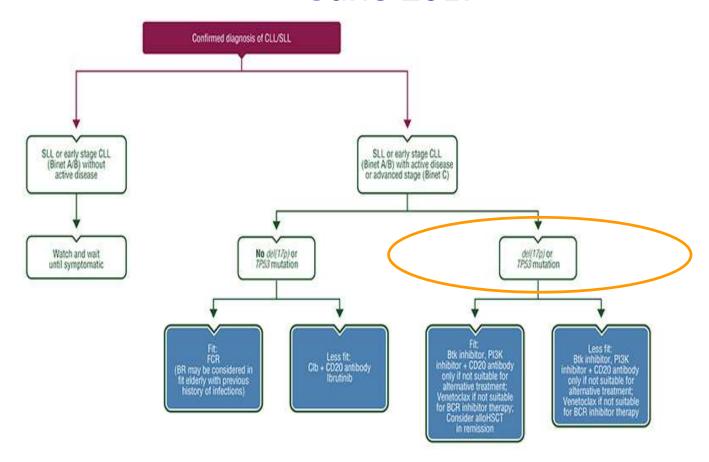
Robak et al. ASH 2017; Abstract 1750 (Poster Presentation)



### Studio multicentrico di fase 2 per valutare attività e sicurezza di Ibrutinib associato a Rituximab in prima linea nei pazienti unfit affetti da Leucemia Linfocitica Cronica (LLC)

#### Studio GIMEMA LLC1114

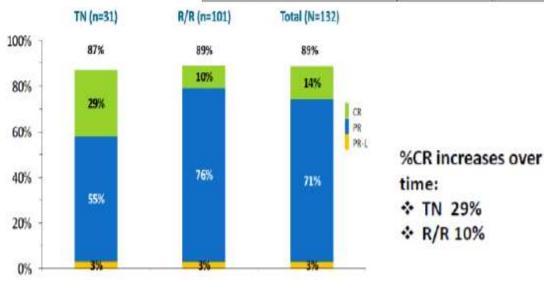
Ibrutinib (PCI-32765) 420 mg (3 capsule da 140 mg) sarà somministrato per via orale una volta al giorno. La prima dose sarà somministrata in ospedale al giorno 1, dopo di che le successive sono normalmente assunte dal paziente a casa. La durata del trattamento con Ibrutinib si baserà su quale dei tre eventi si verificherà prima:

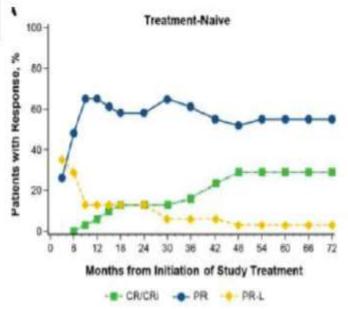

- Trattamento fino a progressione o tossicità;
- Trattamento fino a negatività MRD per sei mesi;
- Trattamento per 6 anni.

Rituximab 375 mg/m² endovena: mese 1: giorno 1 delle settimane 1, 2, 3, 4; mesi 2-6: giorno 1 della settimana 1.

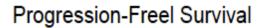
#### Criteri di inclusione:

- 18 o più anni di età;
- CIRS totale > 6 e/o clearance della creatinina < 70 ml/min [</li>

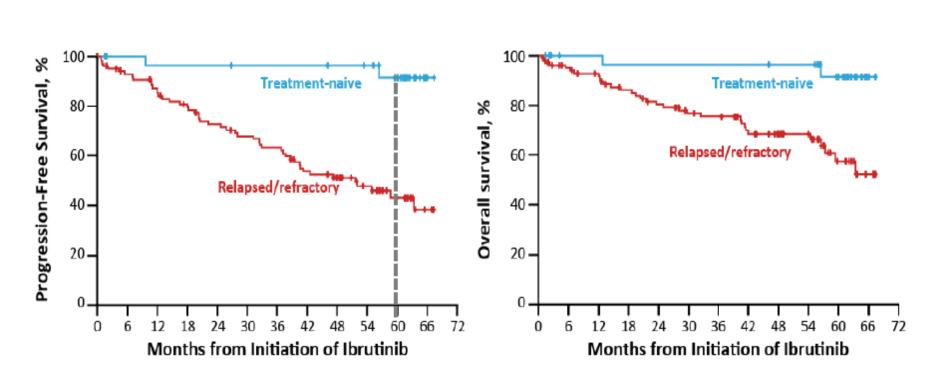

# ESMO CLL Guidelines in frontline setting – Update June 2017



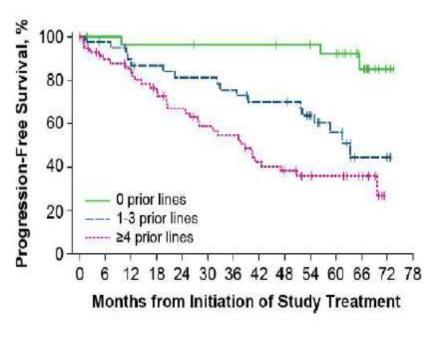

alloi-SCT, allogeneic haematopoietic stem cell transplantation; BCR, B-cell receptor; BK, Bruton's tyrosine kinase; BR, bendamustine plus rituximato; Clb, chlorambucil; CLL, chronic lymphocytic leukaemia; FCR, fludarabine, cyclophosphamide and rituximato; PGK, phosphatidylinositide 3-kinase; SLL, small lymphocytic leukaemia; TP53, tumour protein p53

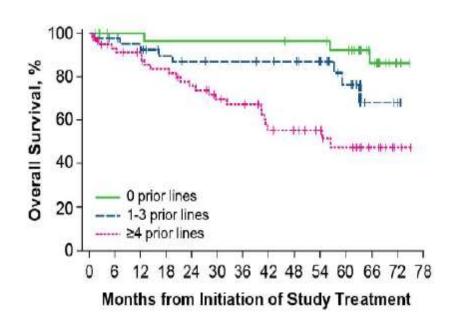

# Single-Agent Ibrutinib in TN and R/R CLL. A 5-Year Experience of PCYC 1102/1103 trials

| Characteristic                 | TN<br>(n=31)  | R/R<br>(n=101) |
|--------------------------------|---------------|----------------|
| Median age, years (range)      | 71<br>(65–84) | 64<br>(37–82)  |
| Rai stage III-IV               | 55%           | 57%            |
| Bulky disease ≥5 cm            | 19%           | 54%            |
| Med.prior therapies, n (range) | -             | 4 (1-12)       |
| Unmutated IGHV                 | 48%           | 78%            |
| Del17p<br>Del11q               | 6%<br>3%      | 34%<br>35%     |







# Single-Agent Ibrutinib in TN and R/R CLL. A 5-Year Experience of PCYC 1102/1103 trials




### Overall Survival



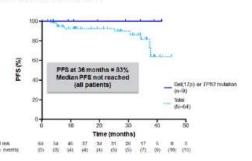
# Single-Agent Ibrutinib in TN and R/R CLL. A 5-Year Experience: impact of prior treatments

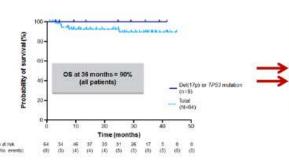




## A phase 2 study of idelalisib plus rituximab in treatmentnaive older patients with chronic lymphocytic leukemia

Table 4. Overall response rate, combined primary and extension studies (N = 64)


|                 |                | Del(17p)/TP53 mutation* |                  | IGHV mutation*   |                    |
|-----------------|----------------|-------------------------|------------------|------------------|--------------------|
| Response, n (%) | Total (N = 64) | Either (N = 9)          | Neither (N = 52) | Mutated (N = 23) | Unmutated (N = 37) |
| CR              | 12 (18.8)      | 3 (33.3)                | 7 (13.5)         | 7 (30.4)         | 3 (8.1)            |
| PR              | 50 (78.1)      | 6 (66.7)                | 43 (82.7)        | 15 (65.2)        | 33 (89.2)          |
| PR-L            | 0              | 0                       | 0                | 0                | 0                  |
| SD              | 0              | 0                       | 0                | 0                | 0                  |
| PD              | 0              | 0                       | 0                | 0                | 0                  |
| NE              | 2 (3.1)        | 0                       | 2 (3.8)          | 1 (4.3)          | 1 (2.7)            |
| ORR†            | 62 (96.9)      | 9 (100.0)               | 50 (96.2)        | 22 (95.7)        | 36 (97.3)          |
| 95% CI‡         | 89.2-99.6      | 66.4-100                | 86.8-99.5        | 78.1-99.9        | 85.8-99.9          |


CI, confidence interval; CR, complete response; IGHV, immunoglobulin heavy-chain variable region; NE, not evaluable; PD, progressive disease; PR, partial response; PR-L, PR with lymphocytosis; SD, stable disease.

\*Patients with missing mutation data were not included.

TORR = CR + PR.

±95% exact binomial CI of ORR.

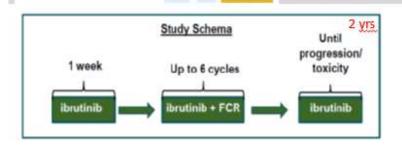




- In 64 older patients with untreated CLL or small lymphocytic leukemia, treatment with idelalisib plus rituximab produced a very high response rate (97%), including 19% CR
- SAEs occurred in 66% of patients; Most common Grade ≥3 AEs were diarrhea/colitis, transaminase elevations, neutropenia, and pneumonia



AEs in ≥20% of patients (All patients, N=64)


| Patients, n (%)   | Any grade | Grade ≥3 |
|-------------------|-----------|----------|
| Any AE            | 64 (100)  | 57 (89)  |
| Diarrhoea/colitis | 49 (77)   | 27 (42)  |
| Rash              | 37 (58)   | 8 (13)   |
| Pyrexia           | 27 (42)   | 2 (3)    |
| Nausea            | 24 (38)   | 1 (2)    |
| Chills            | 23 (36)   | 0        |
| Cough             | 21 (33)   | 1 (2)    |
| Fatigue           | 20 (31)   | 0        |
| Pneumonia         | 18 (28)   | 12 (19)  |
| Dyspnoea          | 16 (25)   | 4 (6)    |
| Headache          | 15 (23)   | 0        |
| Vomiting          | 14 (22)   | 2 (3)    |
| Insomnia          | 13 (20)   | 0        |

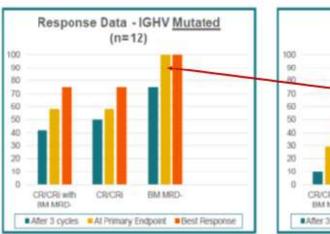
Laboratory abnorm (Grade ≥3)

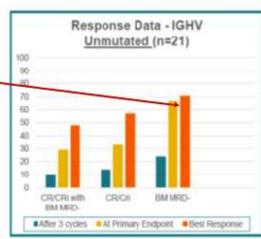
| Patients, n (%)        |  |
|------------------------|--|
| Transaminase elevation |  |
| Neutropenia            |  |
| Anaemia                |  |
| Thrombocytopenia       |  |



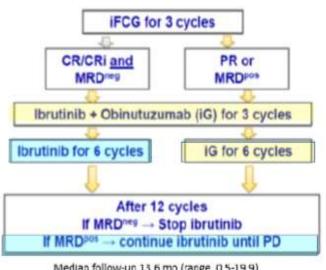
### A phase II study of ibrutinib + FCR for younger, TN CLL




| Baseline                 | n=35       |
|--------------------------|------------|
| Age, median (range)      | 55 (38-65) |
| Del17p, %                | 4          |
| Unmutated IGHV (n=33), % | 64         |
| TP53 mutation, %         | 6          |


|                                     | Best response            |
|-------------------------------------|--------------------------|
| ORR                                 | 100% (35/35)             |
| PR                                  | <b>37%</b> (13/35)       |
| CR/CRi                              | 63% (22/35)              |
| CR with BM MRD<br>neg. (FCR=20%)    | <b>57%</b> (20/35)       |
| BM MRD negative<br>(37% after iFCR) | <mark>83%</mark> (29/35) |

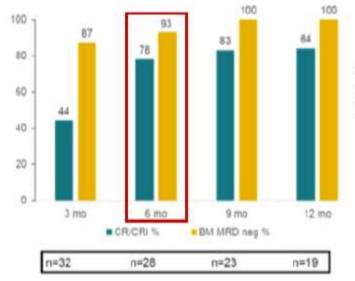
MRD: assessed by 4-color FC (sensitivity 10-4) in BM and PB


#### Grade 3/4 hematologic AEs

- · 29% (23% grade 3, 6% grade 4) neutropenia
- 26% (all grade 3) thrombocytopenia
- 17% infections (all pooled)

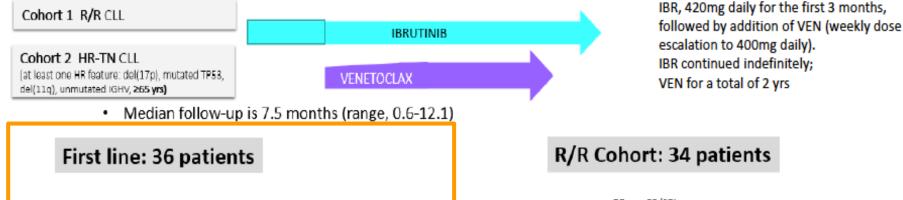





### Ibrutinib, fludarabine, cyclophosphamide, obinutuzumab (iFC-G) for TN-CLL with mutated IGHV and without TP53 aberrations



Median follow-up 13.6 mo (range, 0.5-19.9)


| Baseline, n (%) or<br>median (range) | (N=36)     |  |
|--------------------------------------|------------|--|
| Age, yrs (range)                     | 60 (25-71) |  |
| Del(13q)                             | 26 (72)    |  |

| Trial | Regimen         | N   | scan | CR/ | BM<br>MRD***% |
|-------|-----------------|-----|------|-----|---------------|
| MDACC | FCR x6          | 88  | No   | 83  | 51            |
| MDACC | FCR x6          | 82  | No   | 66  | 56            |
| CLL8  | FCR x6          | 113 | No   | 50  | 50            |
| CLL10 | FCR x6          | 123 | Yes  | 39  | 62            |
| MDACC | iFCG x3 → iG x3 | 28  | Yes  | 78  | 93            |



All 19 pts MRDnegative at 1 year discontinued ibrutinib

## Venetoclax + Ibrutinib TN High-Risk and R/R CLL (FLAIR TRIAL)





### Phase 1b Venetoclax + Obinutuzumab in TN-CLL: Study Design

#### **Key eligibility criteria**

- Treatment-naïve CLL
- ECOG PS 0-1
- Adequate organ function

**Primary objective:** MTD, Safety, and tolerability **Secondary objective:** Efficacy **Exploratory:** MRD

Cycle 1: VEN 400 mg (ramp up per US label);
G 100 mg D1, 900 mg D2, 1000 mg D8,15 (28-day cycle)

Schedule A: VEN first

Schedule B: G first

6 cycles of VEN+G, followed by 6 cycles of VEN monotherapy (VEN could be extended after 1 yr depending on CLL status)

| Baseline Characteristics  | 1L CLL (N=32) |
|---------------------------|---------------|
| Median age; years (range) | 63 (47-73)    |
| Male; n (%)               | 20 (63)       |
| TLS risk; n (%)           |               |
| Medium                    | 23 (72)       |
| High                      | 7 (22)        |
| Schedule A (VEN first); n | 6             |
| Schedule B (G first); n   | 26            |
| β2M ≥3.5 mg/mL, n/N (%)   | 19/32 (59)    |

| Baseline Characteristics                  | 1L CLL (N=32) |
|-------------------------------------------|---------------|
| Cytogenetic assessment available, n/N (%) |               |
| Del(17p)                                  | 5/29 (17)     |
| Del(11q)                                  | 6/29 (21)     |
| Trisomy 12                                | 6/29 (21)     |
| Del (13q)                                 | 11/29 (38)    |
| TP53 mutation, n/N (%)                    | 5/26 (19)     |
| IGHV unmutated, n/N (%)                   | 16/27 (57)    |
| CD38+, n/N (%)                            | 12/25 (48)    |

Flinn et al. ASH 2017. Abstract #430.

## Phase 1b/2: Obinutuzumab, Ibrutinib, and Venetoclax in CLL - Treatment Naive Cohort: Study Design and Baseline

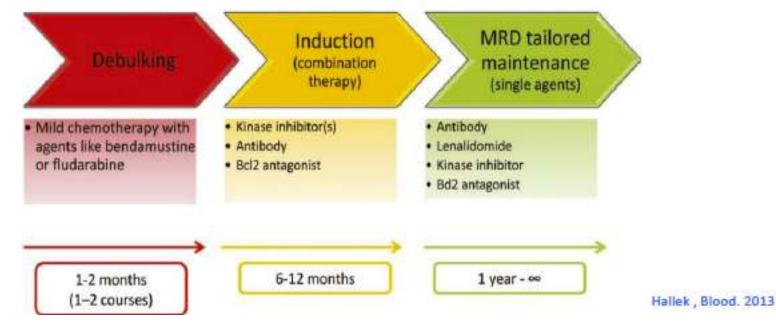
#### Inclusion criteria

- TN, symptomatic CLL
- ECOG PS ≤1
- Preserved end-organ and BM function

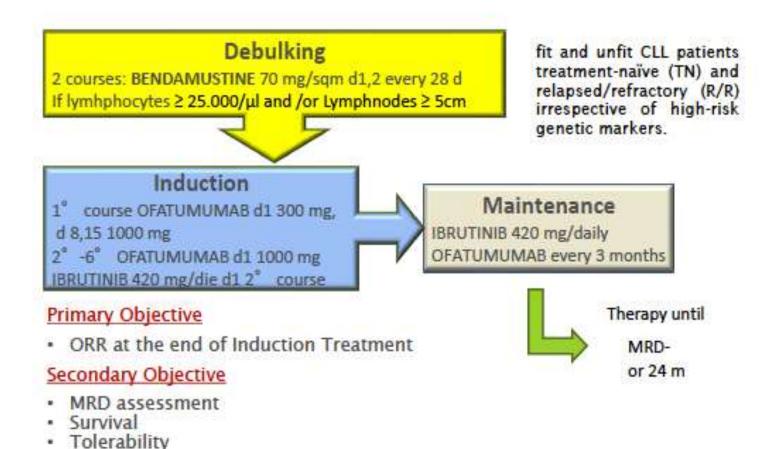
#### **Exclusion criteria**

- Uncontrolled autoimmune thrombocytopenia or anemia
- Clinically apparent Richter's Transformation
- CNS involvement by leukemia
- Use of Warfarin or potent CYP3A4 inhibitors or inducers ≤ 7 days prior to study treatment

Fourteen 28-day cycles OBI+IBR+VEN started sequentially over the first 3 cycles


- C1: OBI (D1: 100mg, D2: 900mg, D8,D15: 1,000mg, C2-8 D1: 1,000mg)
- C2: add IBR in C2 (C2-14 D1-28: 420mg)
- C3: add VEN in C3 with dose escalation according to its US label

**Primary objective:** MRD (-) CR after C14 are expected in May 2018


| Baseline<br>Characteristic<br>s, % | N=25              | Baseline<br>Characterist<br>ics, % | N=25 |
|------------------------------------|-------------------|------------------------------------|------|
| Median age,<br>yrs (range)         | 59<br>(24-<br>77) | Unmutated<br>IGHV                  | 71   |
| Male                               | 60                | Complex<br>karyotype               | 24   |
| Del(11)q                           | 20                | Trisomy 12                         | 12   |
| Del(17)p                           | 12                | TLS Risk<br>high                   | 28   |
| Del(13)q                           | 20                | TLS Risk<br>medium                 | 72   |
|                                    |                   | TLS Risk low                       | 0    |

- Many of the previous observations have raised the question of whether combinations of novel drugs w/o CIT might achieve longer remissions or even cure.
- The GCLLSG aiming for a total MRD eradication tested the so-called sequential triple-T: an optional debulking with up to 2 cy of a single drug (eg bendamustine) followed by 6 mo of induction therapy using combinations of MoAbs and KIs or Venetoclax, or both, followed by MRD-tailored maintenance.

von Tresckow, ASH 2016



### Bendamustine Followed By Ofatumumab and Ibrutinib in CLL: CLL2-BIO Trial of the German CLL Study Group (GCLLSG)



Cramer P et al Abstract 494 ASH 2017

