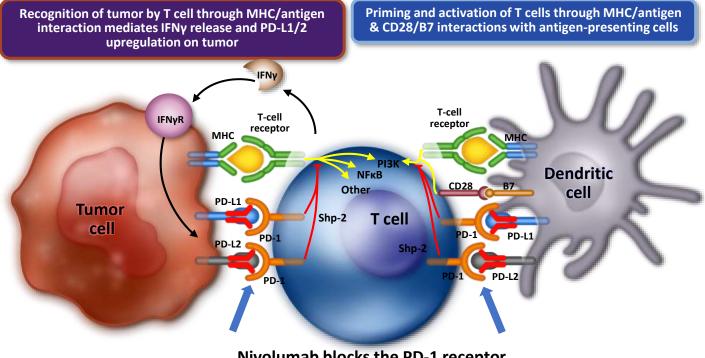

Immune Checkpoints Inhibitors to Treat Lymphomas

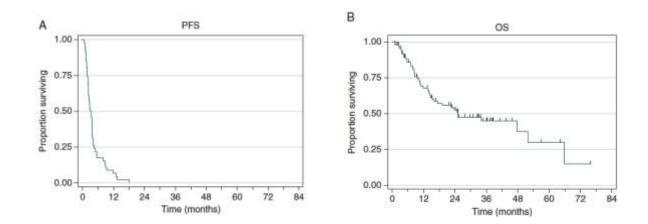
Carmelo Carlo-Stella, MD


Department of Biomedical Sciences, Humanitas University, Milano, Italy Humanitas Clinical and Research Center, Milano, Italy

Aggiornamento sui disordini linfoproliferativi e sui protocolli della FIL, Torino, 24 November 2017

PD-1/PD-L1 Signaling

Anti-PD-1: Mechanism of Action

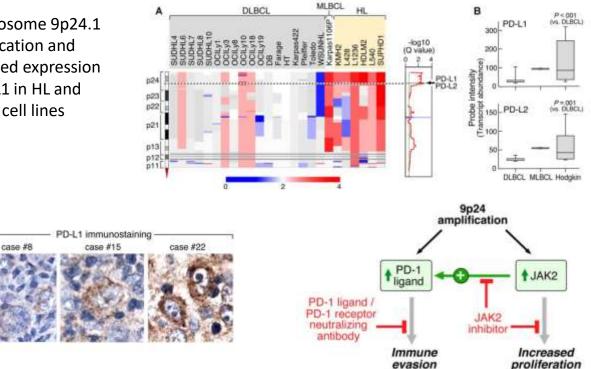


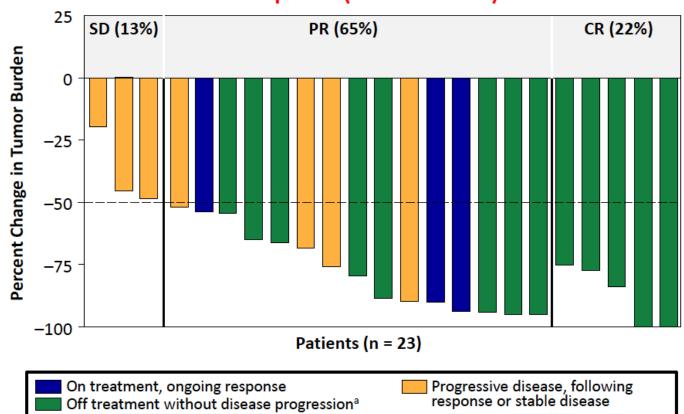
Nivolumab blocks the PD-1 receptor

Unmet Medical Needs in Lymphomas

- Primary refractory / high-risk HL (20%-25%)
- Primary refractory / high-risk DLBCL (30%-40%)
- Primary refractory / high-risk T-NHL (30%-40%)

Patients with classical Hodgkin lymphoma experiencing disease progression after treatment with brentuximab vedotin have poor outcomes Cheah Cl et al, Ann Oncol, 27:1317, 2016




Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma

M Green, Blood, 2010

Chromosome 9p24.1 ٠ amplification and increased expression of PD-L1 in HL and MLBCL cell lines

С

Best Response (PR + CR = 87%)

Select Treatment-Related Adverse Events

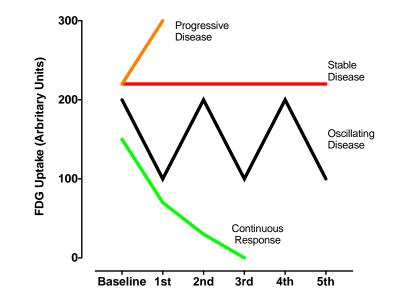
Adverse Event	cHL (n = 23)			
	Any Grade,	Resolved, %		
	n (%)			
Gastrointestinal	4 (17)			
Diarrhea	3 (13)	100		
Colitis	1 (4)	100		
Hepatic	2 (9)			
ALT increased	1 (4)	100		
AST increased	1 (4)	100		
Blood alkaline phosphatase increased	1 (4)	0		
Pulmonary	1 (4)			
Pneumonitis	1 (4)	100		
Skin	5 (22)			
Rash	4 (17)	100		
Pruritus	3 (13)	100		
Pruritic rash	1 (4)	100		
Skin hypopigmentation	1 (4)	0		
Endocrine disorders				
Hyperthyroidism	4 (17)	75		
Hypersensitivity/infusion reaction	2 (9)			
Bronchospasm	1 (4)	100		
Infusion-related reaction	1 (4)	100		

• All AEs were Grade 1/2 except colitis and pneumonitis which were Grade 3

• There were no Grade 4 or Grade 5 AEs and no treatment-related deaths

Challenging Issues

• Response assessment


• Mechanisms of acquired resistance to Nivo

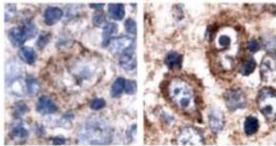
Response Assessment

 Patients at risk of being prematurely removed from a treatment from which they actually stand to benefit

 Patients at risk of receiving a treatment from which they actually do not benefit

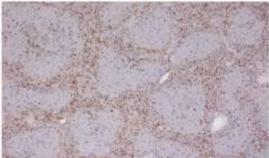
Types of PET Responses

Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy


Bruce D. Cheson,¹ Stephen Ansell,² Larry Schwartz,³ Leo I. Gordon,⁴ Ranjana Advani,⁵ Heather A. Jacene,⁶ Axel Hoos,⁷ Sally F. Barrington,⁸ and Philippe Armand⁶ Blood, 128:2489, 2016

• Findings suggestive of Progressive Disease despite evidence of clinical benefit (eg, tumor flare or pseudo-progression)

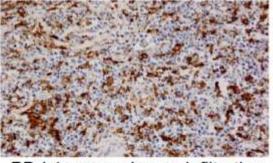
• To reduce ambiguity in current trials and to enable the collection of accurate data in a consistent way


Pre-clinical rationale for PD-1/PD-L1 blockade

Hodgkin lymphoma

PD-L1 expression on R-S cells corresponds to 9p24.1 amplification Green et al, Blood 2010

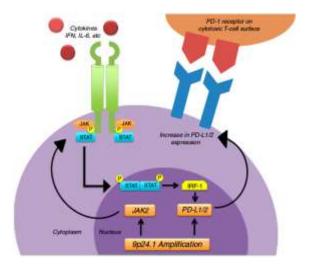
Follicular lymphoma

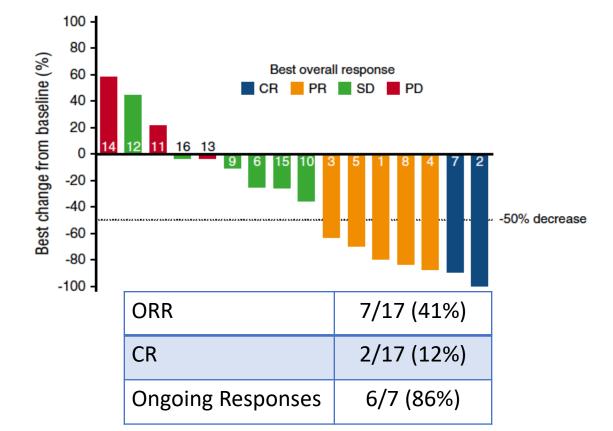

PD-L1 expression on infiltrating macrophages (interfollicular)

Diffuse large B cell lymphoma

PD-L1 expression on tumor cells in some cases (ABC / non-GCB > GCB)

Diffuse large B cell lymphoma

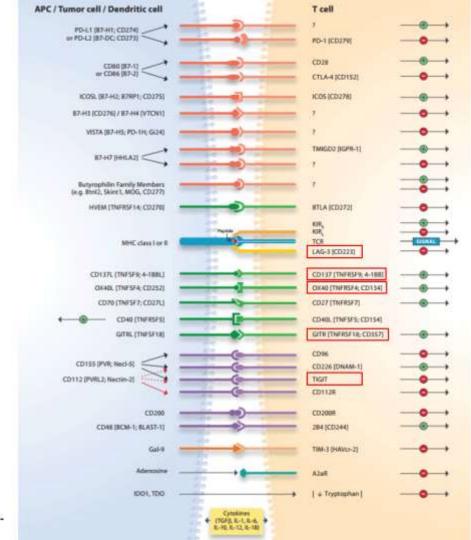

PD-L1 expression on infiltrating macrophages


Andorsky et al, Clin Cancer Res 2011, Chen et al, Clin Cancer Res 2013

PD-L1-Expressing Lymphomas

- PMLBCL
- Mediastinal gray zone lymphomas
- Richter transformation of CLL
- EBV & virus-related Lymphomas
- Plasmablastic lymphomas
- NK/T-cell lymphoma
- Angioimmunoblastic T-cell lymphoma
- Multicentric Castleman disease

Pembrolizumab in PMLBCL (PD-L1⁺ Lymphoma)



Zinzani et al, Blood 2017

Nivolumab in NHL: Best Response

Tumor Type	# pts	ORR	CR	PR	SD	
Hodgkin Lymphoma	23	20 (87)	6 (26)	14 (61)	3 (13)	
B-Cell Non-Hodgkin Lymphoma	31	8 (26)	3 (10)	5 (16)	16 (52)	
Diffuse Large B-Cell	11	4 (36)	2 (18)	2 (18)	3 (27)	
Follicular	10	4 (40)	1 (10)	3 (30)	6 (60)	
Mantle Cell	4	0	0	0	3 (75)	
Primary Mediastinal B-Cell	2	0	0	0	2 (100)	
Other B-NHL (SLL n=3, MZL n=1)	4	0	0	0	2 (50)	
T-Cell Non-Hodgkin Lymphoma	23	4 (17)	0	4 (17)	10 (43)	
CTCL/MF	13	2 (15)	0	2 (15)	9 (69)	
Peripheral T-Cell	5	2 (40)	0	2 (40)	0	
Other T-NHL	5	0	0	0	1 (20)	
Multiple Myeloma	27	1 (4)	1 (4)	0	17 (63)	
S. Ansell et al, NEJM 2015, A. Lesokhin et al, JCO 2016						

Growing list of immune checkpoints

https://www.bioconnect.nl/immunecheckpoint-proteins-the-b7cd28-

Combinations regimens with checkpoint inhibitors

>100 combination trials underway in blood cancers using: <u>Anti-PD-1</u> (nivolumab, pembrolizumab) <u>Anti-PD-L1</u> (atezolizumab, durvalumab, avelumab) <u>Anti-CTLA-4</u> (ipilimumab, tremelimumab)

- Novel checkpoint inhibitors: LAG-3, KIR, others
- Costimulatory agonistic antibodies: 4-1BB, OX-40, others
- Tumor-targeting mAbs: CD20, CD30, CD38, others
- Antibody-drug conjugates
- Kinase inhibitors: BTK, PI3K, multikinase
- IMiDs
- TLR, STING agonists (interferon-inducers)
- DNA methylation inhibitors
- IDO inhibitors
- Tumor antigen vaccines
- CAR T cells

Acknowledgements

Hematology

S. Gandolfi, MD M. Magagnoli, MD L. Morello, MD R. Mazza, MD F. Ricci, MD L. Castagna, MD A. Santoro, MD

Imaging

A. Chiti, MD F. Lutman, MD P. Magnoni, MD

Pathology

D. Rahal, MD

Surgery

A. Testori, MD M. Alloisio, MD L. Malvezzi, MD

Lab Members

S. Locatelli, Post-doc M. Di Trani, PhD G. Careddu, Technician R. Papait, Post-doc S. Serio, Bioinformatician

Collaborators

P. Armand, DFCI
A. Carbone, Aviano
F. D'Amore, Aarhus University, Aarhus
G. Inghirami, Cornell University, New Yok
S. Monti, Boston University, Boston
S. Pileri, IEO, Milano
D. Rossi, IOSI, Bellinzona
A. Sica, ICH, Milano

Fondazione Umberto Veronesi –per il progresso delle scienze

