I NAO NELLA FIBRILLAZIONE ATRIALE: DALLA RICERCA CLINICA AL MONDO REALE

Emoclinic Symposium "Focus in cardioncologia e implicazioni medico-legali nell'emergenza-urgenza"

Baveno (VB), 6 Maggio 2016

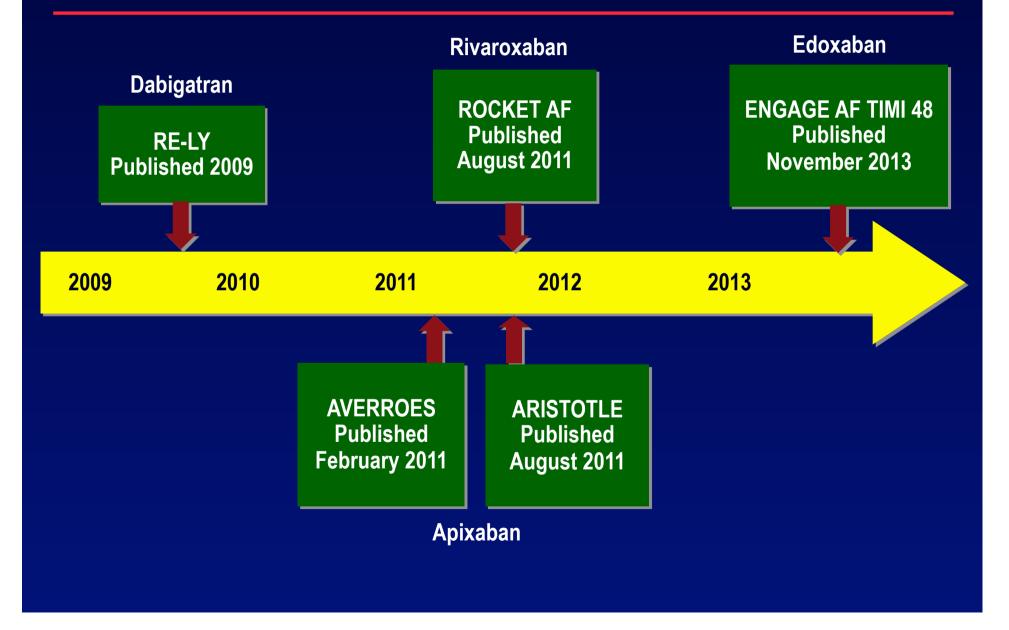
Giuseppe Di Pasquale Direttore Dipartimento Medico ASL Bologna Direttore Unità Operativa Cardiologia Ospedale Maggiore, Bologna

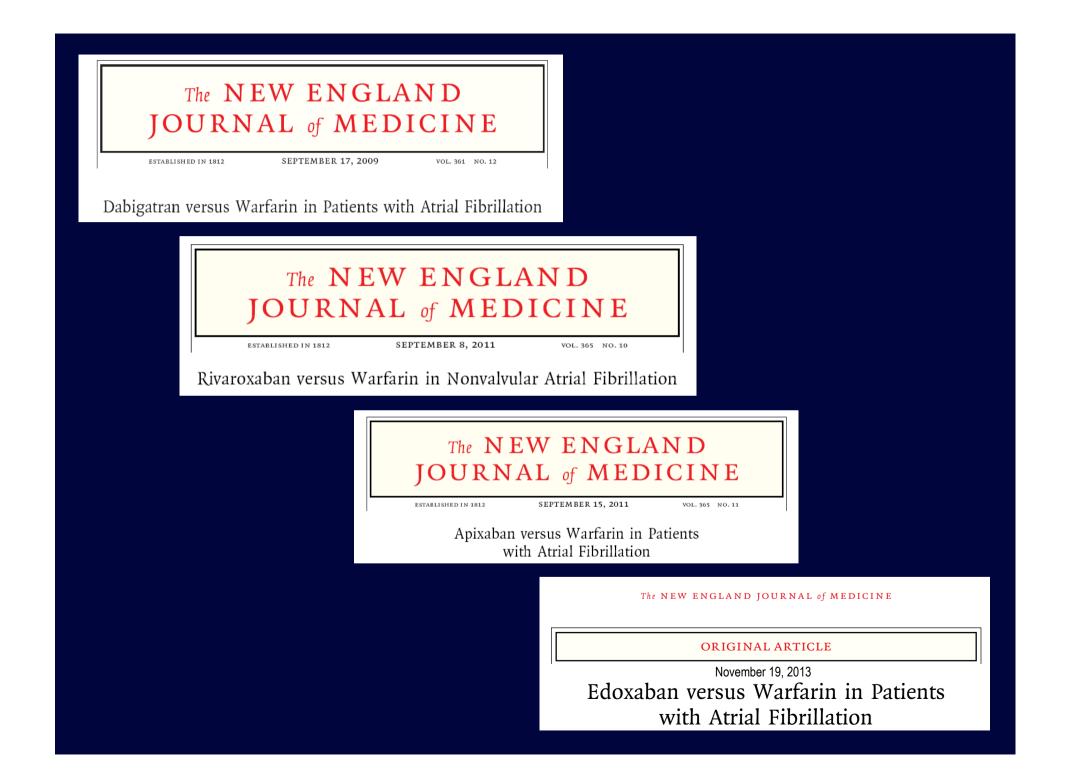
Giuseppe Di Pasquale Disclosures

- Member of the Steering Committee of the RELY, PALLAS, and GLORIA AF
- Member of Advisory Board of Dabigatran, Rivaroxaban, Apixaban, Dronedarone, Edoxaban
- Consulting fees / honoraria Boehringer Ingelheim, Bayer AG, Sanofi Aventis BMS / Pfizer, Daiichi Sankyo

Stroke Prevention in Atrial Fibrillation

Major Advantages of NOACs


- Efficacy
- Safety
- Convenience


Advantages of NOACs vs. Warfarin

Feature	Warfarin	New agents
Onset	Slow	Rapid
Dosing	Variable	Fixed
Food effect	Yes	No
Interactions	Many	Few
Monitoring	Yes	No
Offset	Long	Shorter

Weitz JI, Gross PL, Am Soc Hematol Educ Program 2012;2012:536-40

Atrial Fibrillation: NOACs Phase 3 Study Timelines

NOACs Trials Summary

	RE-LY ⁵	ROCKET-AF ⁶	ARISTOTLE ⁷	ENGAGE-AF ⁸
Drug	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Drug target	Factor IIa	Factor Xa	Factor Xa	Factor Xa
Renal clearance	~80%	~35%	~25%	~50%
Drug dosing	150 mg twice a day; 110 mg twice a day	20 mg once a day (15 mg for creatinine clearance <50 mL/min)	5 mg twice a day (2.5 mg when two of three following criteria are met: age ≥80 years, weight ≤60 kg, creatinine ≥1.5 mg/dL [133 µmol/L])	60 mg once a day (30 mg for creatinine clearance 30–50 mL/min, weight ≤60 kg, or strong P-glycoprotein inhibitor
Drug metabolism	P-glycoprotein and CYP3A4	P-glycoprotein and CYP3A4	P-glycoprotein and CYP3A4	P-glycoprotein
Mean CHADS score	2.1	3.5	2.1	2.8
Design	Open label (dabigatran vs warfarin)	Blinded	Blinded	Blinded

Freek W A Verheugt, Christopher B Granger. The lancet Published online March 14, 2015 http://dx.doi.org/10.1016/S0140-6736(15)60245-8 3

NOAC AF Studies: Baseline characteristics

	RE-LY (Dabigatran)	ROCKET-AF (Rivaroxaban)	ARISTOTLE (Apixaban)	ENGAGE AF (Edoxaban)
Randomized, n	18,113	14,264	18,201	21,105
Age, years	72 ± 9	73 [65-78]	70 [63-76]	72 [64-78]
Female, %	37	40	36	39
Ø CHADS ₂ score	2.1	3.5	2.1	2.8
Paroxysmal AF, %	32	18	15	25
Prior stroke/TIA, %	20	55	19	28
VKA naïve, %	50	38	43	41
Aspirin use, %	40	36	31	29
Median follow-up, years	2.0	1.9	1.8	2.8
Median TTR, %	66	58	66	68
CHADS ₂ 0-1 2	33 32 35	13 87	30 34 36	53 47
3 -6		SJ et al. N Engl J Med 2009;36 et al. N Engl J Med 2011;365:9		

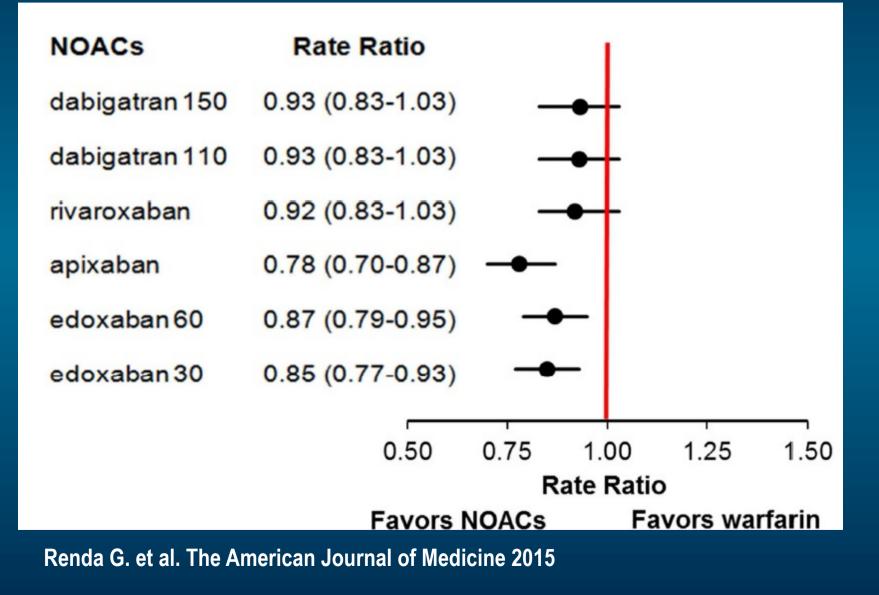
Efficacy and Safety of NOACs 4-trial Meta-analysis Full Dose

Measure	Pooled NOAC Events /Total	Pooled Warfarin Events /Total	Risk Ratio	95% CIs	р	Outcome
Efficacy						
lschaemic Stroke	665 /29292	724 /29221	0.92	0.83-1. 02	0.10	, - <mark>→</mark> -
Hemorrhagic stroke	130 /29292	263 /29221	0.49	0.38-0. 64	<0.0001	
Myocardial Infarction	413 /29292	432 /29221	0.97	0.78-1. 20	0.97	
All-cause mortality	2022 /29292	2245 /29221	0.90	0.851- 0.95	0.0003	\diamond
Safety						
Intracranial hemorrhage	204 /29287	425 /29211	0.48	0.39-0. 59	<0.0001	
Gastrointestin al bleeding	751 /29287	591 /29211	1.25	1.01-1. 55	0.043	
Ruff C, et al. Lancet 2014;383:955-62 0.25 Favours NOAC 1						0.25 Favours NOAC 1 2

CLINICAL RESEARCH STUDY

THE AMERICAN JOURNAL of MEDICINE ®

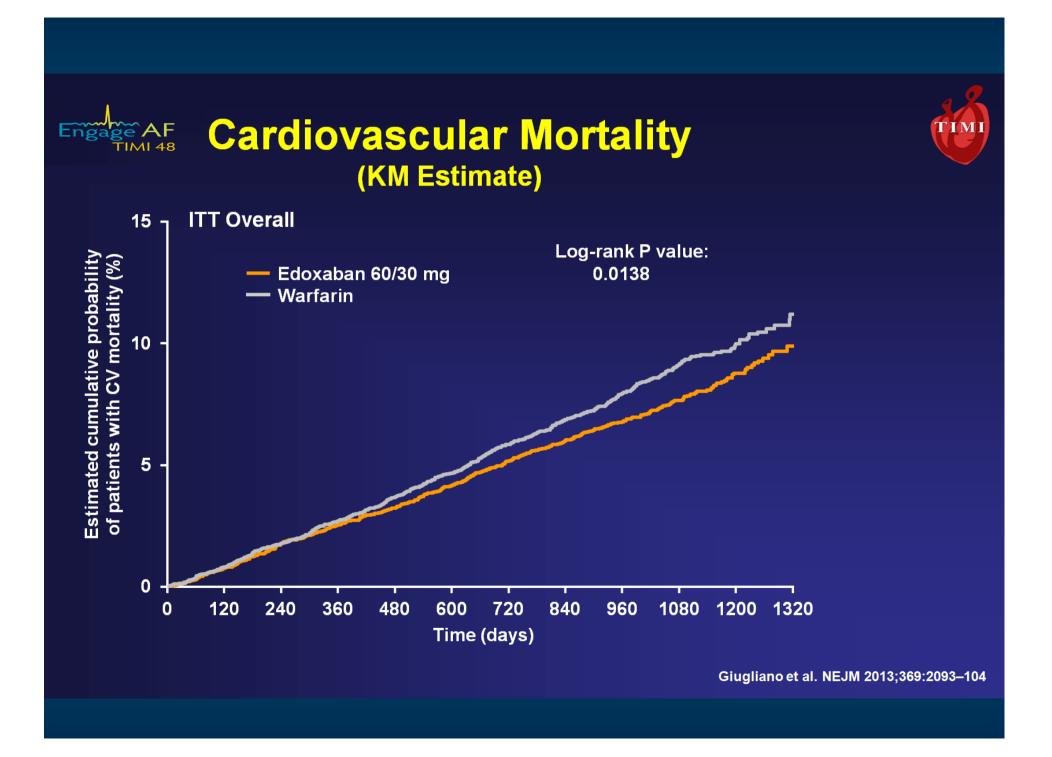
CrossMark


Net Clinical Benefit of Non-vitamin K Antagonist Oral Anticoagulants Versus Warfarin in Phase III Atrial Fibrillation Trials

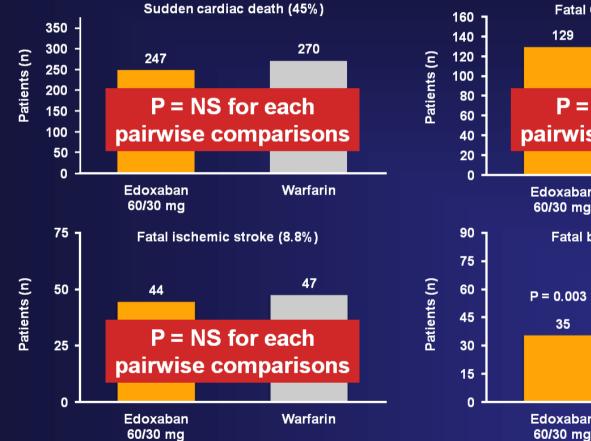
Giulia Renda, MD, PhD,^a Marta di Nicola, PhD,^b Raffaele De Caterina, MD, PhD^{a,c}

^aInstitute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences-Center of Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy; ^bLaboratory of Biostatistics, Department of Experimental and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; ^c "G. Monasterio" Foundation, Pisa, Italy.

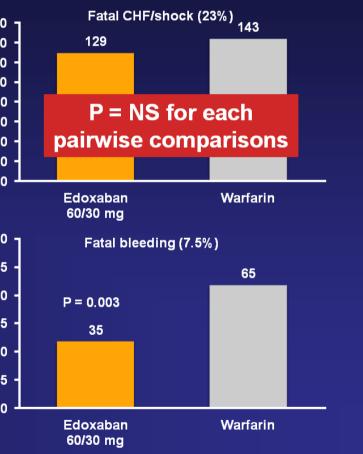
Am J Med. 2015; 128: 1007-1014


Unweighed composite of ischemic stroke + SE + MI + hemorrhagic stroke + adjusted major bleeding

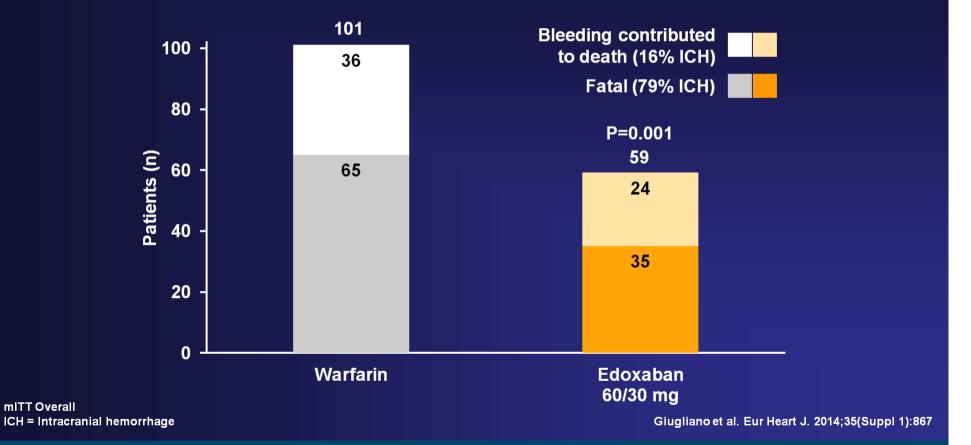
Secondary efficacy and safety outcomes


	Pooled NOAC (events)	Pooled warfarin (events)				RR (95% CI)	р
Efficacy							
Ischaemic stroke	665/29292	724/29221		\rightarrow		0.92 (0.83–1.02)	0.10
Haemorrhagic stroke	130/29292	263/29221	\longrightarrow			0.49 (0.38–0.64)	<0.0001
Myocardial infarction	413/29292	432/29221	-			0.97 (0.78–1.20)	0.77
All-cause mortality	2022/29292	2245/29221		(\bigcirc)		0.90 (0.85–0.95)	0.0003
Safety							
Intracranial haemorrhage	204/29287	425/29211	\longrightarrow			0.48 (0.39–0.59)	<0.0001
Gastrointestinal bleeding	751/29287	591/29211	Ŷ	-	\rightarrow —	1.25 (1.01–1.55)	0.043
		0.2	I 0.5	1		2	
			Favours NOAC		Favours warfarin		

Ruff CT et al. Lancet, December 4, 2013

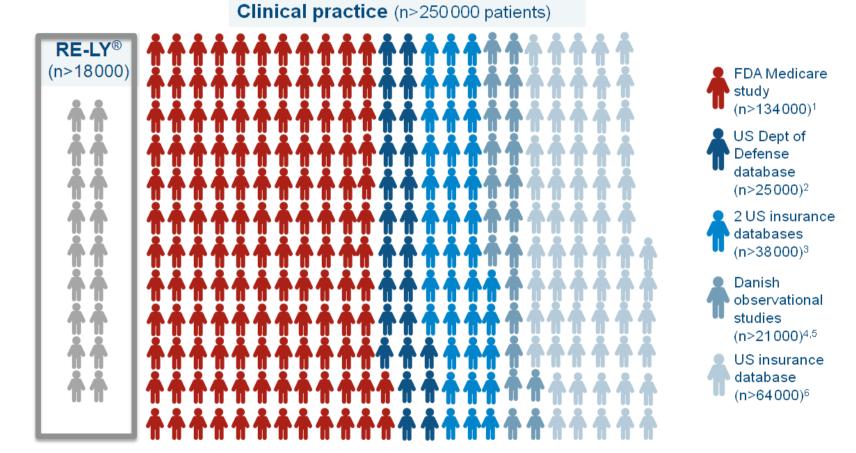


Top Four Types of CV Death


Engage AF

TIMI 48

Giugliano et al. Eur Heart J. 2014;35(Suppl 1):867


Fatal Bleeds and Bleeds Contributing to Death

ТІМІ

Dai trial al real world

Growing body of real-world experience from >250 000 patients confirms safety and efficacy profile of dabigatran

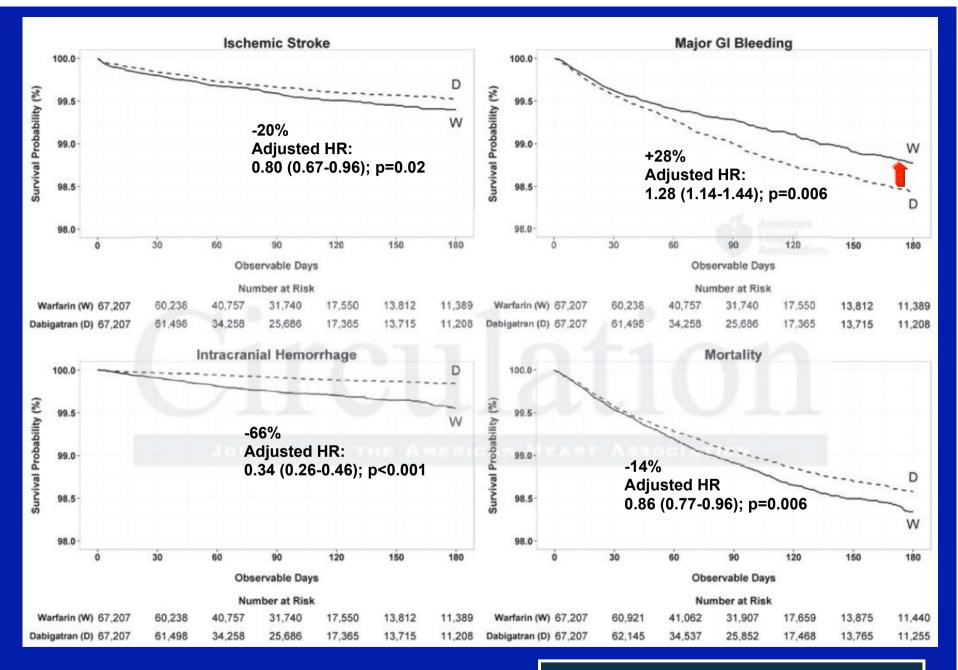
In the USA, the licensed doses for Pradaxa[®] are: Pradaxa[®] 150 mg BID and Pradaxa[®] 75 mg BID for the prevention of stroke and systemic embolism in adult patients with nonvalvular AF

1. Graham DJ et al. Circulation 2015; **2.** Villines TC et al. Circulation 2014; **3.** Seeger J et al. Circulation 2014; **4.** Larsen TB et al. Am J Med 2014a; **5.** Larsen TB et al. Am J Med 2014b; **6.** Lauffenburger JC et al. J Am Heart Assoc 2015

Cardiovascular, Bleeding, and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA;
Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD;
Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD;
Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS;
Jeffrey A. Kelman, MD, MMSc

Background—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.

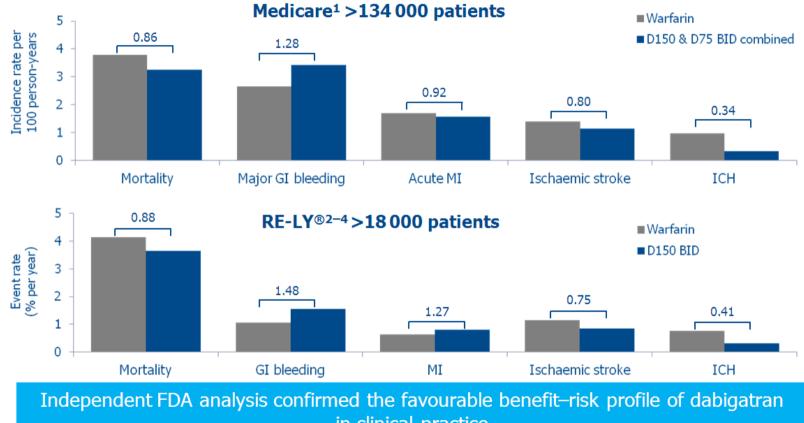

Methods and Results—We formed new-user cohorts of propensity score–matched elderly patients enrolled in Medicare who initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37 587 person-years of follow-up, there were 2715 primary outcome events. The hazard

Circulation 2015;131:157-64

Cardiovascular, Bleeding, and Mortality Risks in Elderly Medicare Patients Treated With Dabigatran or Warfarin for Nonvalvular Atrial Fibrillation

David J. Graham, MD, MPH; Marsha E. Reichman, PhD; Michael Wernecke, BA;
Rongmei Zhang, PhD; Mary Ross Southworth, PharmD; Mark Levenson, PhD;
Ting-Chang Sheu, MPH; Katrina Mott, MHS; Margie R. Goulding, PhD;
Monika Houstoun, PharmD, MPH; Thomas E. MaCurdy, PhD; Chris Worrall, BS;
Jeffrey A. Kelman, MD, MMSc

- *Background*—The comparative safety of dabigatran versus warfarin for treatment of nonvalvular atrial fibrillation in general practice settings has not been established.
- *Methods and Results*—We formed new-user cohorts of propensity score–matched elderly patients enrolled in Medicare who initiated dabigatran or warfarin for treatment of nonvalvular atrial fibrillation between October 2010 and December 2012. Among 134414 patients with 37587 person-years of follow-up, there were 2715 primary outcome events. The hazard ratios (95% confidence intervals) comparing dabigatran with warfarin (reference) were as follows: ischemic stroke, 0.80 (0.67–0.96); intracranial hemorrhage, 0.34 (0.26–0.46); major gastrointestinal bleeding, 1.28 (1.14–1.44); acute myocardial infarction, 0.92 (0.78–1.08); and death, 0.86 (0.77–0.96). In the subgroup treated with dabigatran 75 mg twice daily, there was no difference in risk compared with warfarin for any outcome except intracranial hemorrhage, in which case dabigatran risk was reduced. Most patients treated with dabigatran 75 mg twice daily appeared not to have severe renal impairment, the intended population for this dose. In the dabigatran 150-mg twice daily subgroup, the magnitude of effect for each outcome was greater than in the combined-dose analysis.
- *Conclusions*—In general practice settings, dabigatran was associated with reduced risk of ischemic stroke, intracranial hemorrhage, and death and increased risk of major gastrointestinal hemorrhage compared with warfarin in elderly patients with nonvalvular atrial fibrillation. These associations were most pronounced in patients treated with dabigatran 150 mg twice daily, whereas the association of 75 mg twice daily with study outcomes was indistinguishable from warfarin except for a lower risk of intracranial hemorrhage with dabigatran. (*Circulation*. 2015;131:157-164. DOI: 10.1161/CIRCULATIONAHA.114.012061.)



Graham DJ et al. Circulation 2014; October 30

U.S. Food and Drug Administration Protecting and Promoting Your Health

Independent FDA Medicare analysis findings are consistent with findings from RE-LY[®]

in clinical practice

In the USA, the licensed doses for Pradaxa® are: Pradaxa® 150 mg BID and Pradaxa® 75 mg BID for the prevention of stroke and systemic embolism in adult patients with nonvalvular AF

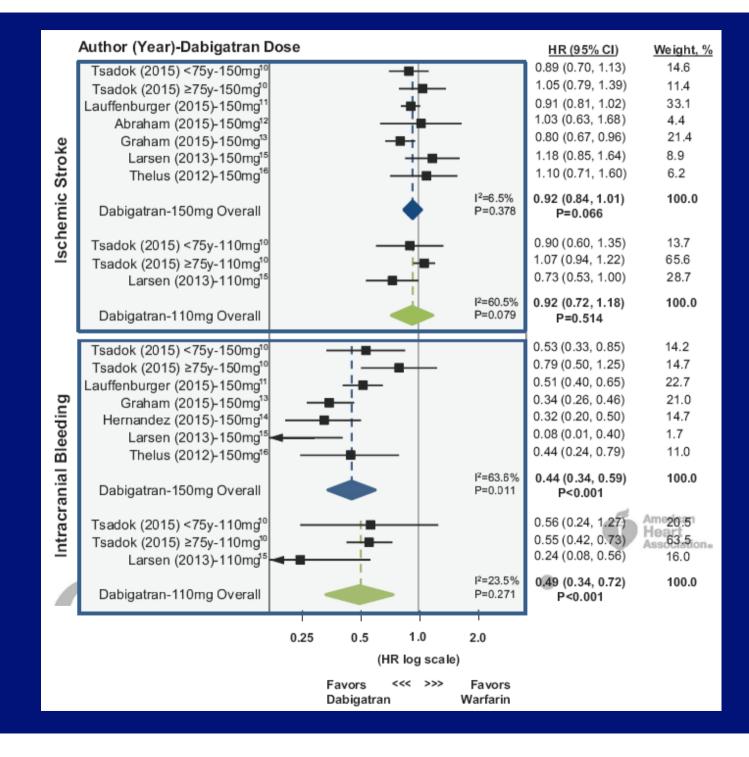
Numbers on bars denote HRs vs warfarin. D75 = dabigatran 75 mg; D150 = dabigatran 150 mg

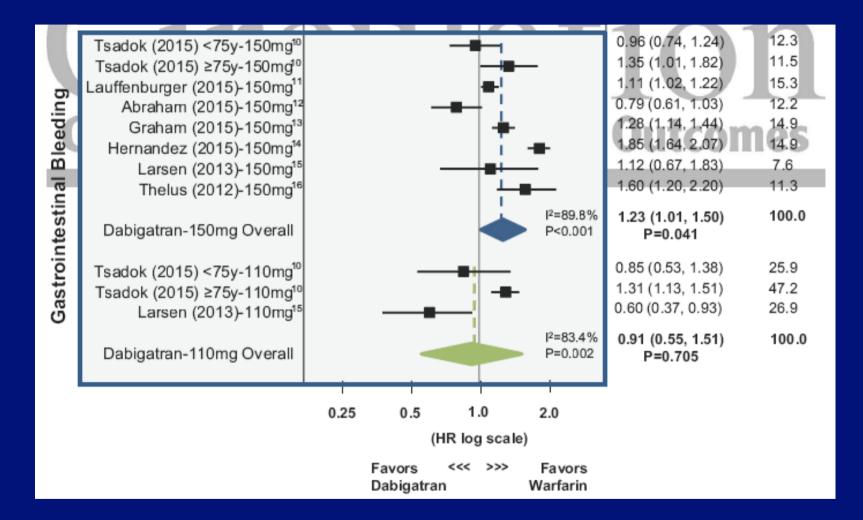
1. Available at http://www.fda.gov/Drugs/DrugSafety/ucm396470.htm; accessed September 2014; 2. Connolly SJ et al. N Engl J Med 2010;361:1139–51; 3. Connolly SJ et al. N Engl J Med 2010;363:1875–6; 4. Pradaxa®: EU SPC, 2014

The increased risk of major gastrointestinal bleeding with dabigatran was restricted to women aged \geq 75 years and to men aged \geq 85 years

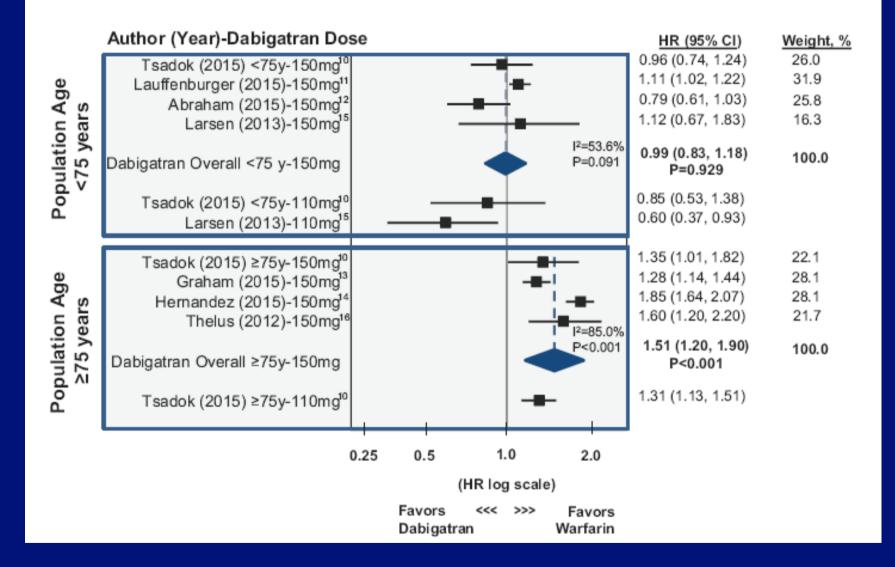
	Age-group	Men	Women
	(n)	Hazard ratio	Hazard ratio
		(95% CI)	(95% CI)
Ischemic stroke			
	65-74 (55,761)	0.69 (0.42-1.14)	0.81 (0.51-1.31)
	75-84 (57,345)	0.98 (0.64-1.51)	0.89 (0.64-1.26)
	≥ 85 (21,308)	0.89 (0.41-1.90)	0.60 (0.40-0.91)
Intracranial hemorrhage			
	65-74 (55,761)	0.32 (0.15-0.68)	0.13 (0.04-0.44)
	75-84 (57,345)	0.27 (0.14-0.50)	0.59 (0.35-0.98)
	≥ 85 (21,308)	0.51 (0.18-1.48)	0.26 (0.12-0.56)
Major GI bleeding			Cold Vaccounter
	65-74 (55,761)	0.83 (0.60-1.14)	0.99 (0.72-1.37)
	75-84 (57,345)	1.02 (0.79-1.31)	1.50 (1.20-1.88)
	≥ 85 (21,308)	1.55 (1.04-2.32)	2.18 (1.61-2.97)

Graham DJ et al. Circulation 2014; 131: 157-164

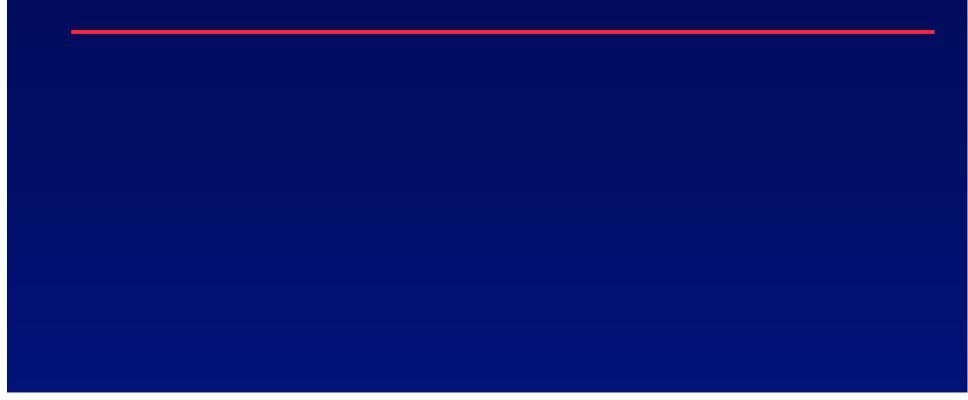

Original Article


Dabigatran Versus Warfarin for Atrial Fibrillation in Real-World Clinical Practice

A Systematic Review and Meta-Analysis


Robert J. Romanelli, PhD, MPH; Laura Nolting, BS; Marina Dolginsky, BS; Eunice Kym, PharmD; Kathleen B. Orrico, PharmD

Circ Cardiovasc Qual Outcomes, March 2016



Circ Cardiovasc Qual Outcomes, March 2016

Circ Cardiovasc Qual Outcomes, March 2016

Rivaroxaban and real world

Quality and Outcomes

Characterizing Major Bleeding in Patients With Nonvalvular Atrial Fibrillation: A Pharmacovigilance Study of 27 467 Patients Taking Rivaroxaban

1 . .

Major Bleed Characteristics*

Characteristic		No MB, n = 26 989
Age, y, mean (SD) ^a	78.4 (7.7)	75.7 (9.7)
Comorbid condition, % ^b	100.0	87.0
HF	48.5	23.7
Hypertension	95.6	75.8
CHD	64.2	36.7
Renal disease	38.7	16.7
CHADS₂ score, mean (SD)	3.0 (1.2)	2.2 (1.3)
CHA ₂ DS ₂ -VASc score, mean (SD)	4.8 (1.5)	3.7 (1.7)

Endpoint definition approved by FDA

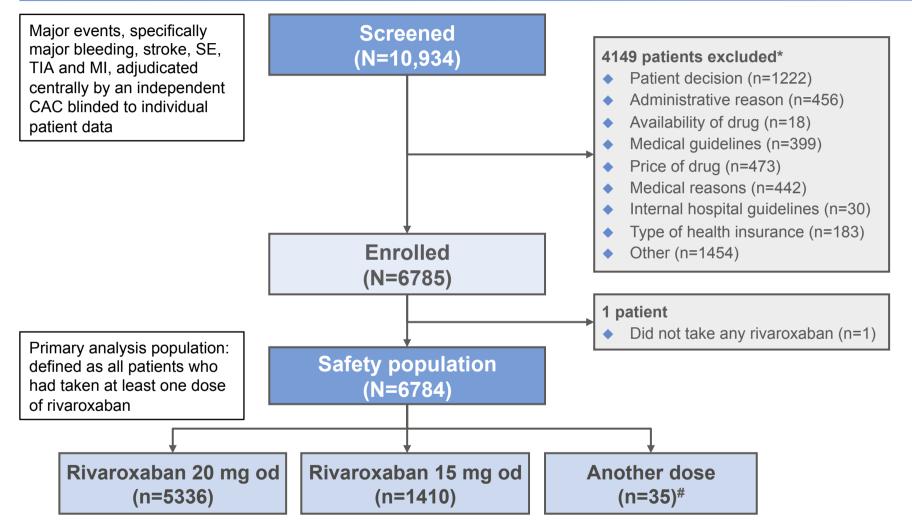
*MB classified using the Cunningham et al. definition including: GI bleeding, hemorragic Strokes and other intracranial bleeds, genitourinarybleeding and bleeding at other sites.

	MB Cases (N $=$ 478)
MB cases with fatal outcome	14
Patients with multiple MB events	16
MB incidence rate per 100 person-years (9	2.86 (2.61-3.13)
Bleeding cases with fatal outcome (95% C	i) 0.08 (0.05-0.14)
MB location, n	
GI hemorrhage	423
ICH ≅ 0.2 2	2%/year 36
Genitourinary hemorrhage	2
Other	12
Length of hospitalization, d, mean (SD) c	3.8 (3.0)
Blood transfusion received, %	46.7
Transferred to ICU, %	43-3
Surgical intervention needed, %	25.1

Tamayo et al., Clin Cardiol 2015

US Department of Defense (DoD) EMRs served as the sole data source for this study

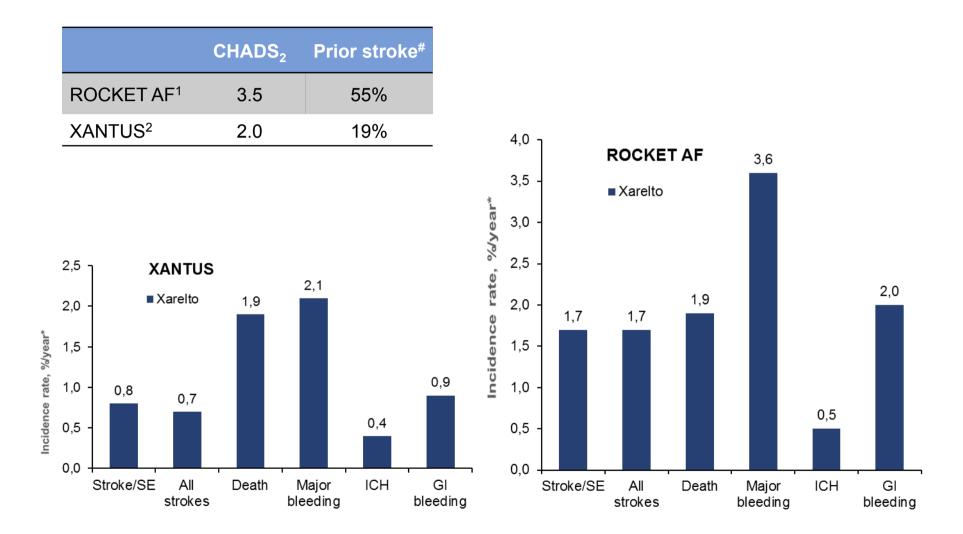
European Heart Journal Advance Access published September 1, 2015


European Heart Journal doi:10.1093/eurheartj/ehv466 FASTTRACK ESC Clinical Registry

XANTUS: a real-world, prospective, observational study of patients treated with rivaroxaban for stroke prevention in atrial fibrillation

A. John Camm¹*, Pierre Amarenco², Sylvia Haas³, Susanne Hess⁴, Paulus Kirchhof^{5,6}, Silvia Kuhls⁷, Martin van Eickels⁴, and Alexander G.G. Turpie⁸, on behalf of the XANTUS Investigators

XANTUS: Patient Flow



*Reasons for not continuing in the study included, but were not limited to, patient decision, administrative or medical reasons. Some patients could have more than one reason for exclusion; [#]other dose includes any initial daily rivaroxaban dose besides 15/20 mg od (excluding missing information, n=3)

1. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurhearti/ehv466

Comparison of Main Outcomes: XANTUS versus ROCKET AF

#Includes prior stroke, SE or TIA; *Events per 100 patient-years

1. Patel MR et al, N Engl J Med 2011;365:883–891; 2. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

Apixaban and real world

Real World Comparison Of Major Bleeding Risk Among Non-valvular Atrial Fibrillation Patients Newly Initiated On Apixaban, Dabigatran, Rivaroxaban Or Warfarin

Lip GYH¹, Pan X², Kamble S², Kawabata H², Mardekian J³, Masseria C³, Bruno A², Phatak H^{2*}

¹University of Birmingham, Birmingham, UK; ²Bristol-Myers Squibb, Princeton, NJ; ³Pfizer, Inc, New York, NY


*At the time of research, Hemant Phatak was an employee of BMS

Sponsored by Bristol-Myers Squibb Company and Pfizer Inc

Lip et al. Poster presentation at ESC Aug/Sept 2015; London, UK Poster/oral poster no.P6217

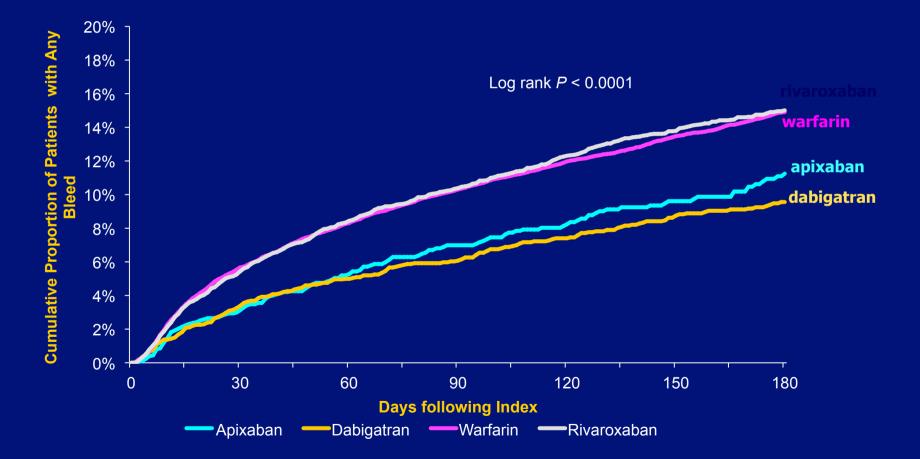
Real-world bleeding risk among non-valvular AF patients newly-prescribed Apixaban, Dabigatran, Rivaroxaban, and Warfarin: Analysis of Electronic Health Records

Cumulative incidence of major bleeding

Truven MarketScan® Commercial and Medicare supplemental data

Lip et al. Poster presentation at ESC Aug/Sept 2015; Poster/oral poster no.P6217 Real-world Bleeding Risk among Non-valvular Atrial Fibrillation Patients Prescribed Apixaban, Dabigatran, Rivaroxaban, and Warfarin: Analysis of Electronic Health Records

Lin I¹, Masseria C², Mardekian J², Frean M¹, Phatak H³, Kamble S³, Abdulsattar Y², Petkun W², Menzin J¹, Lip GYH⁴


¹Boston Health Economics - Waltham - United States of America, ²Pfizer, Inc. - New York - United States of America, ³Bristol-Myers Squibb - Princeton - United States of America, ⁴University of Birmingham - Birmingham - United Kingdom.

Sponsored by Bristol-Myers Squibb Company and Pfizer Inc

Lin I et al. Poster presentation at ESC Aug/Sept 2015; London, UK Poster/oral poster no. P6215

Kaplan Meier Analysis of Any Bleed During Follow Up

 Bleeding within 180 days: 15% of patients in the warfarin and rivaroxaban cohorts, vs 9-11% of patients in the apixaban and dabigatran cohorts

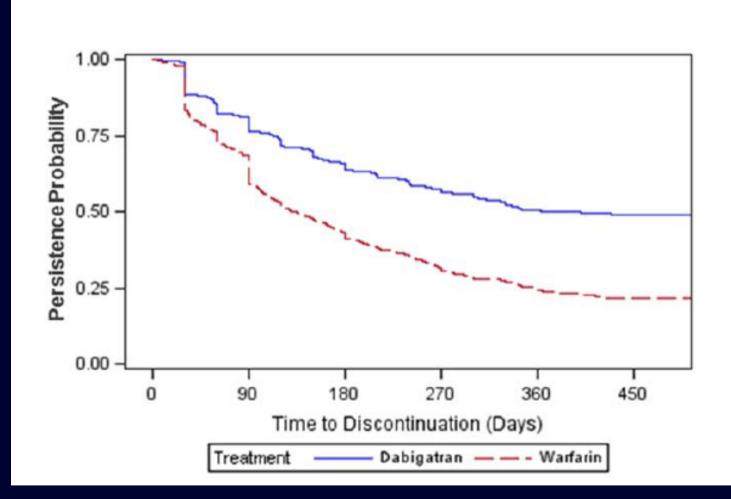
Lin I et al. Poster presentation at ESC Aug/Sept 2015; London, UK Poster/oral poster no. P6215

Major Ongoing 'Real Life' Studies

Registry	Population Size	Patient Enrolment – Key Design Features	Follow-up Duration
GARFIELD-AFª	Target: 55,000 To date: 45,000	 Prospective patients (n = 50,000) enrolled < 6 weeks after AF diagnosis in 5 sequential cohorts Retrospective patients (n = 5000) enrolled 6 to 24 months after diagnosis ≥ 1 additional investigator-determined risk factor for stroke 	≥ 2 years, up to 8 years
GLORIA-Af ^{b,c}	Target: 56,000 To date: 11,000	 Prospective patients enrolled < 3 months after AF diagnosis in 3 phases CHA₂DS₂-VASc score ≥ 1 	0 to 3 years Phase 1 (pre-NOAC): none Phase 2 (dabigatran): 2 years Phase 3 (VKA/NOAC): 3 years
ORBIT-AF I ^{d,e}	10,132	 Incident or prevalent AF Patients excluded if anticipated life expectancy < 6 months 	≥ 2 years
ORBIT-AF II ^f	Target: 15,000 To date: 1011	 Prospective patients enrolled < 6 months after AF diagnosis; or enrolled < 3 months after initiation or transition to a NOAC Patients excluded if anticipated life expectancy < 6 months 	≤ 2 years
PREFER-AF ^g	7243	 Prospective patients enrolled < 12 months after AF diagnosis 	1 year

a. Thrombosis Research Institute website. http://www.tri-london.ac.uk/garfield/information; b. Huisman MV et al. Am Heart J. 2014;167:329-334; c. Boehringer Ingelheim Press Release Archive. http://www.boehringer-ingelheim.com/news/ news_releases/press_releases/2014/07_may_2014_gloria-af.html; d. Piccini JP et al. Am Heart J. 2011;162:606-612.e1; e. O'Brien EC, et al. Am Heart J. 2014;167:601-609.e1; f. Steinberg BA. Am Heart J. 2014;168:160-167; g. Kirchhof P, et al. Europace. 2014;16:6-14.

Adherence & persistence with NOACs


Original Article

Higher Persistence in Newly Diagnosed Nonvalvular Atrial Fibrillation Patients Treated With Dabigatran Versus Warfarin

Martin Zalesak, MD, PhD; Kimberly Siu, MD, MPH; Kevin Francis, BS; Chen Yu, BA; Hasmik Alvrtsyan, MS; Yajing Rao, MS; David Walker, PhD; Stephen Sander, PharmD; Gavin Miyasato, MS; David Matchar, MD; Herman Sanchez, MBA

Zalesak M et al, Circ Cardiovasc Qual Outcomes, September 2013

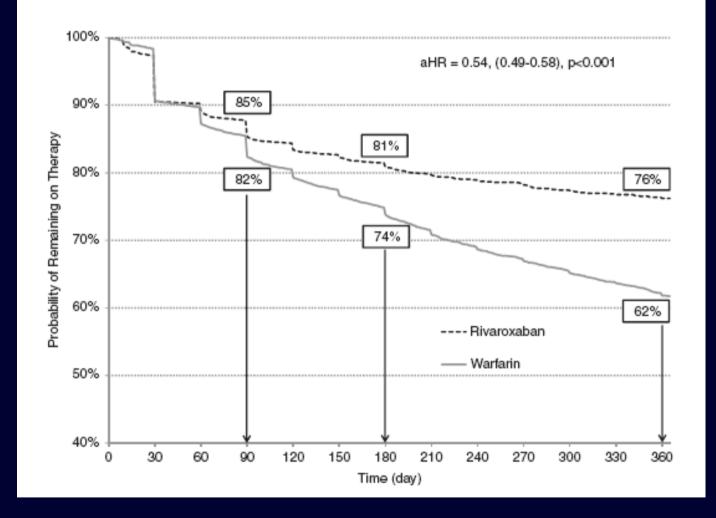
Dabigatran vs Warfarin Persistence in AF

Zalesak M et al, Circ Cardiovasc Qual Outcomes, September 2013

CMRO

Current Medical Research & Opinion 2014, 1-9

0300-7995 doi:10.1185/03007995.2014.933577


Article -/933577 All rights reserved: reproduction in whole or part not permitted

Original article

Medication persistence and discontinuation of rivaroxaban versus warfarin among patients with non-valvular atrial fibrillation

Nelson WW et al. Curr Med Res Opin 2014; 1-9

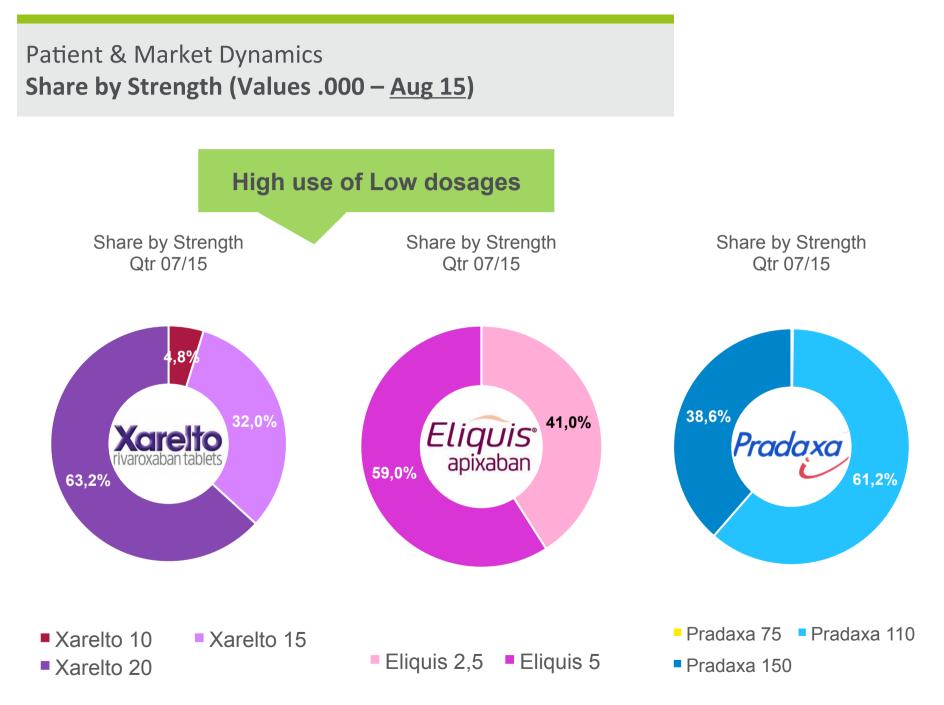
Kaplan-Meier Curve for Therapy Continuation

Nelson WW et al. Curr Med Res Opin 2014; 1-9

Il problema dei dosaggi......

Approved European labels for NOACs and their dosing in CKD-EHRA guideline

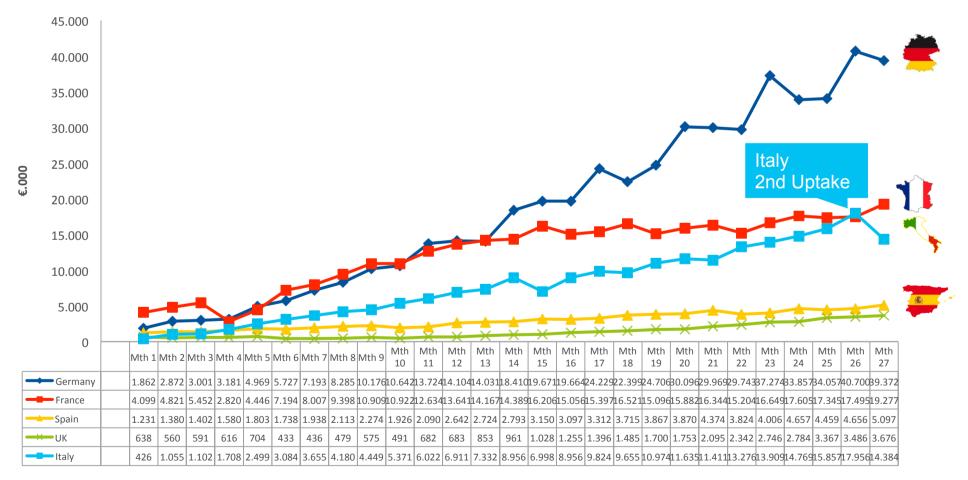
	Dabigatran	Apixaban	Edoxaban	Rivaroxaban
Fraction renally excreted of absorbed dose	80%	27% ^{52–55}	50% ³⁶	35%
Bioavailability	3–7%	50%	62% ⁵¹	66% without food Almost 100% with food
Fraction renally excreted of administered dose	4%	12-29% ⁵²⁻⁵⁵	37% ³⁶	33%
Approved for $CrCl \ge \ldots$	≥30 mL/min	≥15 mL/min	\geq 15 mL/min	\geq 15 mL/min
Dosing recommendation	$CrCl \ge 50 mL/min: no adjustment$ (i.e. 150 mg BID)	Serum creatinine \geq 1.5 mg/dL: no adjustment (i.e. 5 mg BID) ^a	CrCl ≥ 50 mL/min: no adjustment (i.e. 60 mg OD) ^b	CrCl ≥ 50 mL/min: no adjustment (i.e. 20 mg OD)
Dosing if CKD	When CrCl 30–49 mL/min, 150 mg BID is possible (SmPC) but 110 mg BID should be considered (as per ESC guidelines) ⁵ Note: 75 mg BID approved in US only ^c : if CrCl 15–30 mL/min if CrCl 30–49 mL/min and other orange factor Table 6 (e.g. verapamil)	CrCl 15–29 mL/min: 2.5 mg BID If two-out-of-three: serum creatinine ≥ 1.5 mg/dL, age ≥80 years, weight ≤60 kg: 2.5 mg BID	30 mg OD when CrCl 15–49 mL/min	15 mg OD when CrCl 15–49 mL/min
Not recommended if	CrCl < 30 mL/min	CrCl < 15 mL/min	CrCl < 15 mL/min	CrCl < 15 mL/min


EHRA 2015 Europace doi:10.1093/europace/euv309

Stroke and Bleeding Outcomes with Apixaban vs. Warfarin in Patients with High Creatinine, Low Body Weight or High Age Receiving Standard Dose Apixaban for SPAF

Nella pratica clinica, si nota un'eccessiva proporzione delle prescrizione di Apixaban 2,5 mg BID, rispetto alla dose standard. Una simile situazione si riscontra anche con rivaroxaban e dabigatran.

	Apix	Apixaban		Rivaroxaban		Dabigatran		
	Q4 2014		Q4 2014			Q4 2014		
Country	.5mg	5mg	10mg	15mg	20mg	75mg	110mg	150mg
UNITED STATES	24%	76%	6%	21%	73%	16%	0%	84%
JAPAN	58%	42%	55%	45%	0%	40%	60%	0%
GERMANY	41%	59%	4%	34%	61%	2%	61%	37%
CANADA	38%	62%	6%	26%	68%	1%	52%	47%
AUSTRALIA	39%	61%	2%	30%	68%	0%	63%	37%
UNITED KINGDOM	42%	58%	6%	22%	71%	3%	51%	46%
SPAIN	37%	63%	5%	33%	63%	3%	60%	38%
FRANCE	46%	54%	0%	0%	0%	0%	0%	0%
BELGIUM	30%	70%	2%	42%	56%	0%	60%	40%
ITALY	35%	65%	2%	37%	61%	0%	63%	36%


Alexander et al. Poster presentation at ESC Aug/Sept 2015; London, UK Poster/oral poster no.2032

L'uptake dei NAO in Italia

Patient & Market Dynamics NOACs Sales Launch Uptake by Country Comparison (LEU .000 – Aug 15)

NOACs Launch Uptake by Country Comparison Total NOAC - Cumulative Value (.000 LEU) - SPAF Launch - Total

Patient & Market Dynamics OAC Market Sales Trend (DOT .000) MAT Oct 2015

OAC Market Trend MAT Volume (DOT*) (000's) - Italy 350.000 I NAO STANNO (+22%) **ALLARGANDO IL MERCATO** 300.000 10/2015 250.000 • VKA -5% (MAT) • MS NOACs 24% (MAT) DOT .000 200.000 • MS NOACs 33% (Mese) 150.000 +10% +11% 100.000 50.000 0 MAT 10/13 MAT 10/14 MAT 10/15 NOVEL OACS B1E/B1F 3.282 33.699 76.591 VKA B1A 249.514 244.695 232.524

*DOT: Giorni di trattamento