

Le esigenze degli Oncologi

Oncologi

Alessandra Mosca

SC Oncologia Medica AOU Maggiore della Carità, Novara Università degli Studi del Piemonte Orientale

Oncologia Medica 🕂

8114037

© Can Sto

FOTOSEA

k22255834 fotosearch.com ©

CHEMOTHERAPY

TABLE 1. Potential Cardiac Toxicity Induced by Anticancer Chemotherapeutic Agents

DRUG	STUDY	TOXIC DOSE RANGE	CARDIAC TOXICITY	FREQUENCY OF OCCURRENCE ^a
Doxorubicin	Chlebowski 1979 ³⁰	$> 450 \text{ mg/m}^2$	Left ventricular dysfunction	Common
Epirubicin	Tjuljandin 1990 ³¹	> 900 mg/m ²		Common
Idarubicin	Anderlini 1995 ³²	150-290 mg/m ²		Intermediate
Paclitaxel	Perez 1998 ³³	Conventional dose	Left ventricular dysfunction	Intermediate
Docetaxel	Kenmotsu & Tanigawara 2015 ³⁴			Intermediate
Cyclophosphamide	Gottdiener 1981, ³⁵ Goldberg 1986 ³⁶	>100-120 mg/kg	Left ventricular dysfunction	Intermediate
Ifosfamide	Kandylis 1989, ³⁷ Tascilar 2007, ³⁸ Cancer Care Ontario ³⁹	>10 mg/m ²		Uncommon
Capecitabine	Sentürk 2009 ⁴⁰	Conventional dose	Cardiac ischemia	Intermediate
Fluorouracil	Sentürk 2009, ⁴⁰ Schimmel 2004, ⁴¹ Chanan-Khan 2004 ⁴²			Intermediate
Paclitaxel	Perez 1998 ³³	Conventional dose	Cardiac ischemia	Uncommon
Docetaxel	Kenmotsu & Tanigawara 2015 ³⁴			Intermediate
Trabectedin	Lebedinsky 2011 ⁴³	Conventional dose	Cardiac ischemia	Intermediate
Arsenic trioxide	Brana & Taberno 2010 ⁴⁴	Conventional dose	QTc prolongation	Common
Paclitaxel	Perez 1998 ³³	Conventional dose	QTc prolongation	Uncommon

^aCommon indicates that more than 5% reported incidence; intermediate, between 1% and 5% reported incidence; uncommon, less than 1% reported incidence.

Emoclinic

CA CANCER J CLIN 2016

TARGETED THERAPY -I-

Table I. Representative tyrosine kinase inhibitors that caus cardiotoxicity								
Target no.	Agent (trade name)	Class	Targets	Malignancies	Cardiotoxicity incidence	First FDA approval	Molecular mechanism	
Single	Trastuzumab (Herceptin)	mAb	ErbB2 (HER2)	HER2+ breast cancer	LVD: 3-7% as a single agent and ≤64% in combination regimens (>6 months administration)	1998	LVD: inactivation of HER2/Erk/Akt pathway in cardiomyocytes; prevention of HER2 receptor dimerization; tumor cell death; downregulation of HER2 receptor	
	Bevacizumab (Avastin)	mAb	VEGF	mCRC, nsNSCLC, mRCC, GBM	LVD: 1.7-3%; HTN: 16-47%	2004 ^a	HTN: inhibition of VEGF-eNOS to weaken vasodilation; overproliferation of vascular SMCs Thrombosis: increased platelet aggregation and proinflammatory gene expression in endothelial cells	
Multiple	Imatinib (Gleevec)	Small molecule	ABL1/2, KIT, PDGFR α/β	CML, RCC, GIST, HES	HF: 0.5-1.7%	2001	HF: nhibition of ABL causes cardiomyopathy, increased apoptosis and ER stress	
	Sunitinib (Sutent)	Small molecule	VEGFRs, PDGFR α/β, KIT, FLT3	RCC, imatinib resistant GIST	HF: 2.7-11%; HTN: 5-47%	2006	HF: abnormal mitochondrial biogenesis, increased apoptotic cell death, inhibition of AMPK and PDGFRs	

^aApproved for breast cancer and revoked in 2011. FDA, Food and Drug Administration; mAb, monoclonal antibody; HER2, human epidermal growth factor receptor 2; LVD, left ventricular dysfunction; mCRC, metastatic colorectal cancer; nsNSCLC, non-squamous non-small-cell lung cancer; mRCC, metastatic renal cell carcinoma; GBM, glioblastoma multiforme; VEGF, vascular endothelial growth factor; eNOS, endothelial nitric oxide synthase; HTN, hypertension; SMC, smooth muscle cell; PDGFR, platelet-derived growth factor receptor; VEGFR, VEGF receptor; CML, chronic myelogenous leukemia; GIST, gastrointestinal stromal tumor; HES, hypereosinophilic syndrome; HF, heart failure; ER, endoplasmic reticulum; FLT-3, Fms-like tyrosine kinase 3; AMPK, AMP-activated protein kinase.

Emoclinic

MOLECULAR AND CLINICAL ONCOLOGY 4: 675-681, 2016

TARGETED THERAPY -II-

 TABLE 3. Rates of Hypertension With Selected Angiogenesis Inhibitors

GRADE 3/4 HYPERTENSION RATES. %

DISEASE	DRUG	STUDY	ANTIANGIOGENIC	CONTROL
Colon cancer	Bevacizumab	Dewdney 2012, ⁶⁵ Mir 2011 ⁶⁶	11	2.3
Renal cell cancer	Bevacizumab	Fraeman 2013 ⁶⁷	36	NA
Lung cancer	Bevacizumab	Mir 2011, ⁶⁶ Chen 2015 ⁶⁸		0.7
Breast cancer	Bevacizumab	Fraeman 2013, ⁶⁷ Gampenrieder 2014 ⁶⁹	14.8	14.6
Ovarian cancer	Bevacizumab	Fraeman 2013 ⁶⁷	26.4	16.7
Renal cell cancer	Sunitinib	Larochelle 2012 ⁷¹	8	1
GIST	Sunitinib	George 2012 ⁷²	3	0
Breast cancer	Sunitinib	Sungyub & Chamberlain 2015 ⁷³	6	NA
Breast cancer	Sorafenib	Funakoshi 2013 ⁷⁴	17	12
Lung cancer	Cediranib	Langenberg 2009 ⁷⁵	35	NA
Breast cancer	Cediranib	Langenberg 2009 ⁷⁵	(42)	NA
Phase 1	Sorafenib and bevacizumab	Castellano 2013, ⁷⁶ Azad 2008 ⁷⁰	33	NA

Emoclinic

GIST, gastrointestinal stromal tumor; NA, not available.

CA CANCER J CLIN 2016

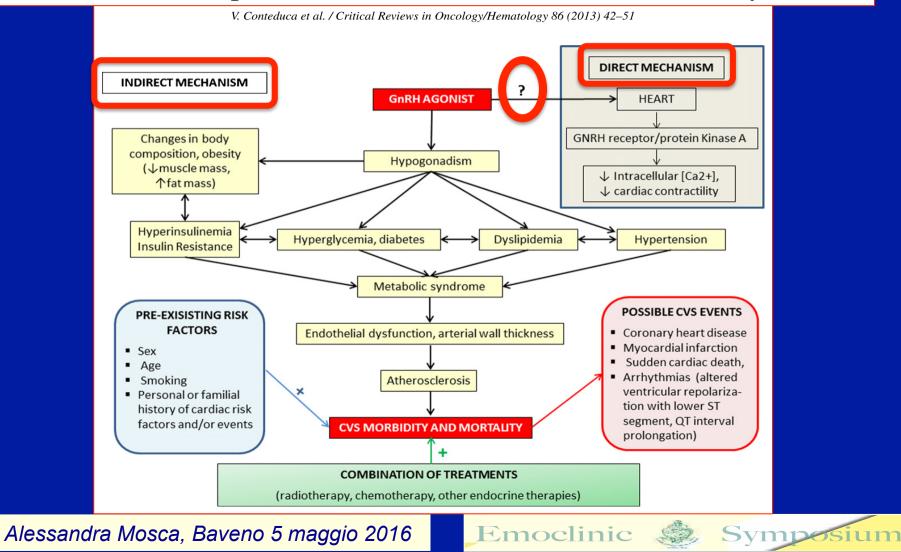
HORMONE-THERAPY -I- BREAST CANCER

✓ 30.023 postmenopausal women ✓ Aromatase Inhibitors (AI) and Tamoxifen (T) as primary adjuvant horm-ther → <u>5 yrs</u> AI or T or T+AI: non-statistically significant increased risk of CV disease (OR 1.11, p=.09) → <u>>5 yrs AI</u>: increased risk of CV disease (OR 1.26, p<.001)

Amir et al, JNCI 2011

✓ Postmenopausal women
 ✓ AI and/or T as primary adjuvant horm-therapy
 → no difference between AI (mono- or sequenced ther) and T for CV disease;
 → sequenced therapy (T->AI) compared with AI alone: lower risk of CV events (moderate level of evidence) -> CV events related to AI deserve further attention

Ryden et al, Breast 2016


Symposium

Alessandra Mosca, Baveno 5 maggio 2016

Emoclinic

HORMONE-THERAPY -II- PROSTATE CANCER

The cardiovascular risk of gonadotropin releasing hormone agonists in men with prostate cancer: An unresolved controversy

HORMONE-THERAPY -III-

PROSTATE CANCER

Symposium

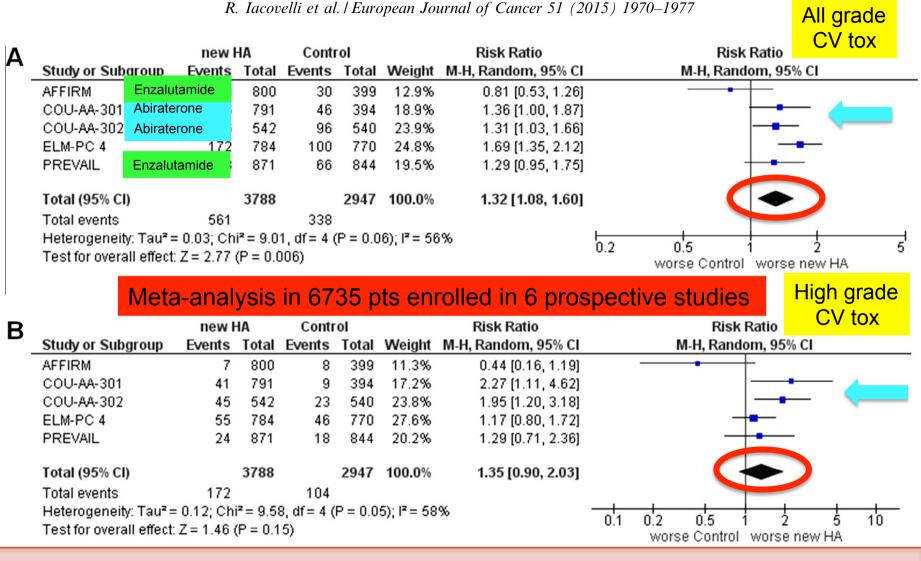


Fig. 2. Relative risk for (A) all- and (B) high-grade cardiac toxicity in patients treated with new hormonal agents (HA) or control.

Emoclinic

Neoplasie solide e farmaci cardiotossici

Alessandra Mosca, Baveno 5 maggio 2016

Emoclinic

NEOPLASIE MAMMARIE

CT:

-ANTRACICLINE, ANTRACICLINE LIPOSOMIALI (peghilate e non peghilate: minore cardiotossicità ma indicate solo nella malattia mts) -5-FLUOROURACILE e CAPECITABINA

HT:

-TAMOXIFENE, INIBITORI AROMATASI

TT:

-antiHER2 (TRASTUZUMAB, PERTUZUMAB, LAPATINIB): cardiotossicità reversibile, ma indispensabile monitoraggio di FE;

CARDIOXANE:

-quale ruolo nella prevenzione della cardiotossicità da antracicline?

(in collaborazione con Dr.ssa Saggia, Dr.ssa Rossi, Dr.ssa Giglione)

Emoclinic

NEOPLASIE POLMONARI

CT:

-CISPLATINO -> premedicazione con abbondante quantità di liquidi -> rischio scompenso cardiaco

TT:

-BEVACIZUMAB -> ipertensione, insufficienza cardiaca, IMA -CRIZOTINIB e CERITINIB (ALK inibitori)-> allungamento QT (predisposizione a torsioni di punta) -NIVOLUMAB -> aritmie

-NINTEDANIB (triplo inibitore orale dell'angiochinasi) -> ipertensione

(in collaborazione con Dr.ssa Buosi, Dr.ssa Borra, Dr.ssa Genestroni)

Emoclinic

NEOPLASIE GASTRO-ENTERO-PANCREATICHE

CT:

-5-FLUOROURACILE (5FU) e CAPECITABINA (in mono-poliCT)

- \rightarrow meccanismo vasospastico endotelina mediato
- → cardiotox: infarto del miocardio, angina, shock cardiogeno, morte improvvisa, prolungamento QT, aritmia cardiaca (fibrillazione ventricolare, torsione di punta e bradicardia), insufficienza cardiaca e cardiomiopatia
- → più a rischio i pazienti con anamnesi di cardiopatia, aritmia e angina pectoris significative

TT:

-BEVACIZUMAB E AFLIBERCEPT: ipertensione, insufficienza cardiaca, disaccoppiamento della fosforilazione mitocondriale nei cardiomiociti -> tachicardia sopraventricolare ed eventi trombotici

-REGORAFENIB: ischemia e infarto del miocardio, ipertensione

(in collaborazione con Dr.ssa Forti, Dr.ssa Negru, Dr.ssa Bertona)

NEOPLASIE TESTA-COLLO E MELANOMA

CT: -CISPLATINO, 5FU

TT: -DABRAFENIB (BRAF inibitore) +/- TRAMETINIB (MEK inibitore): riduzione FEV

(in collaborazione con Dr Sponghini, Dr Rondonotti)

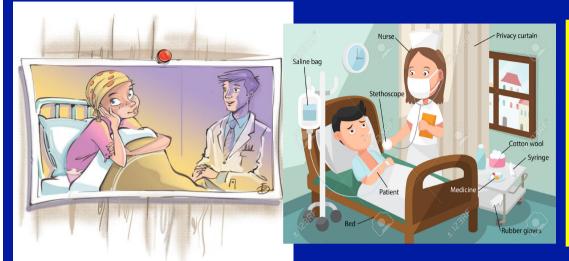
NEOPLASIE UROLOGICHE E NEUROENDOCRINE

CT: -CISPLATINO

TT:

-SUNITINIB, SORAFENIB, (PAZOPANIB, CABOZANTINIB, NIVOLUMAB)

HT: -LHRH-AGONISTI, ABIRATERONE, ENZALUTAMIDE



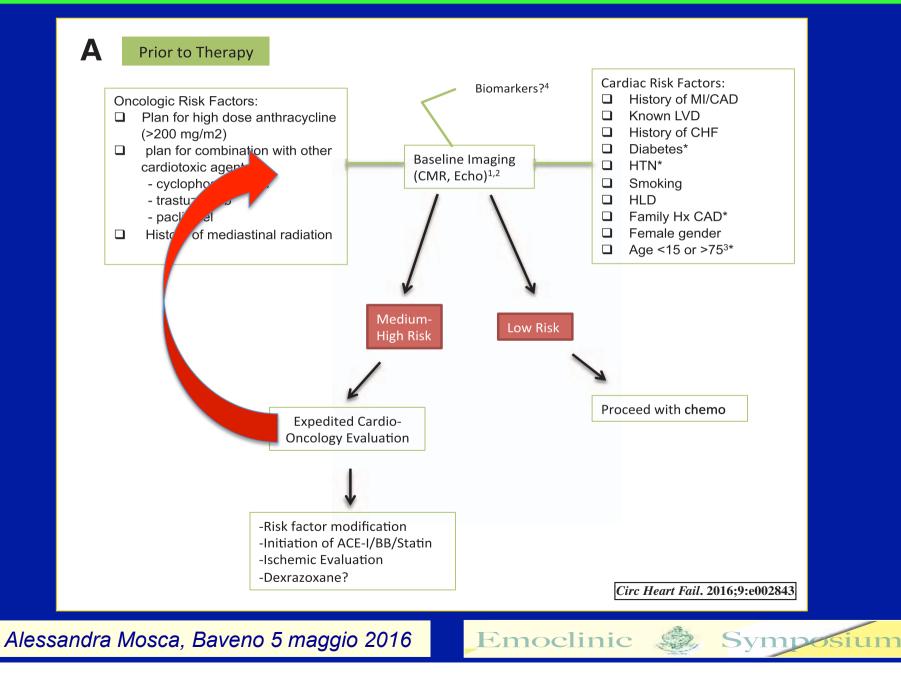
Tipologia di paziente/fase di malattia oncologica e cardiotossicità

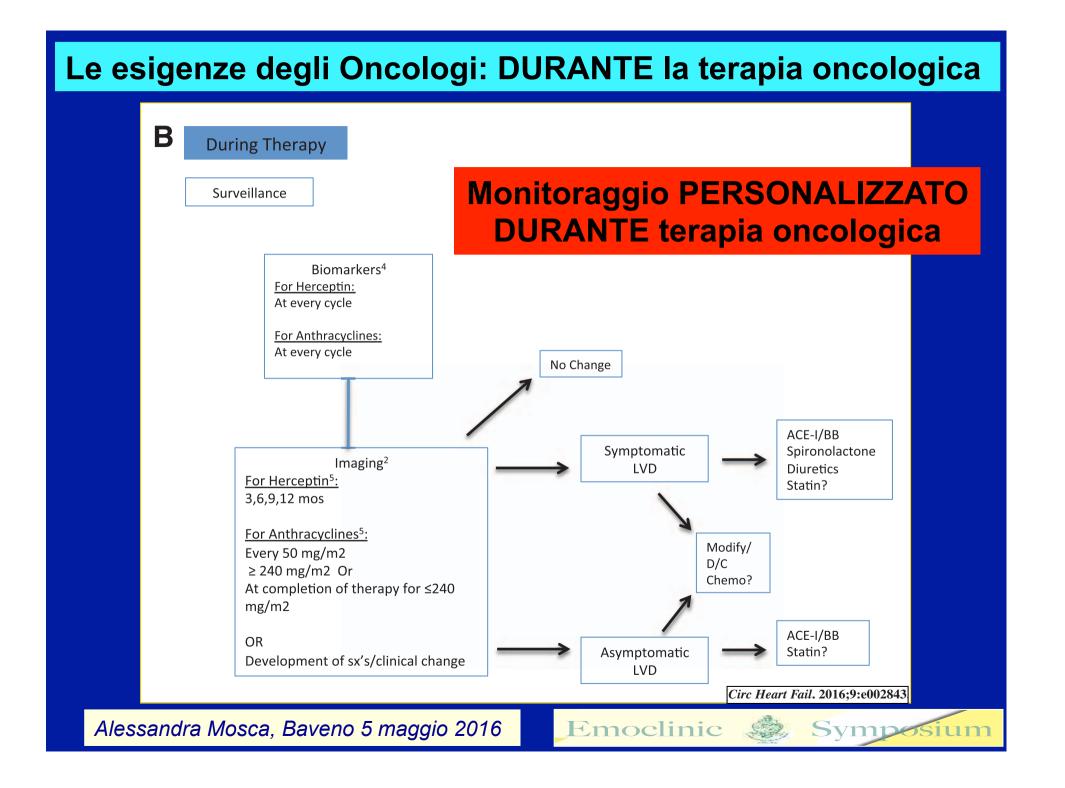
cardiotossicità

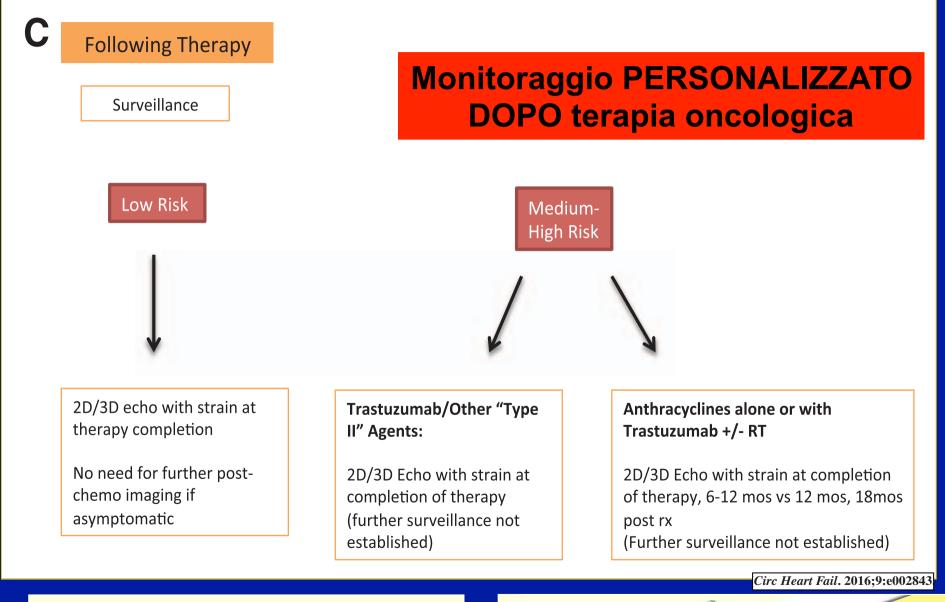
Emoclinic

-Giovane
-No comorbidità cardiologiche
-M0, CT adiuvante
-> lunga aspettativa di vita
-> NB: danni CV acuti/<u>tardivi</u>

-Anziano
-Comorbidità (anche cardiologiche)
-M1, CT palliativa
-> ridotta aspettativa di vita
-> NB: danni CV <u>acuti</u>/tardivi


Valutazione cardio-oncologica del paziente (cardio-)oncologico


(cardio-)oncologico



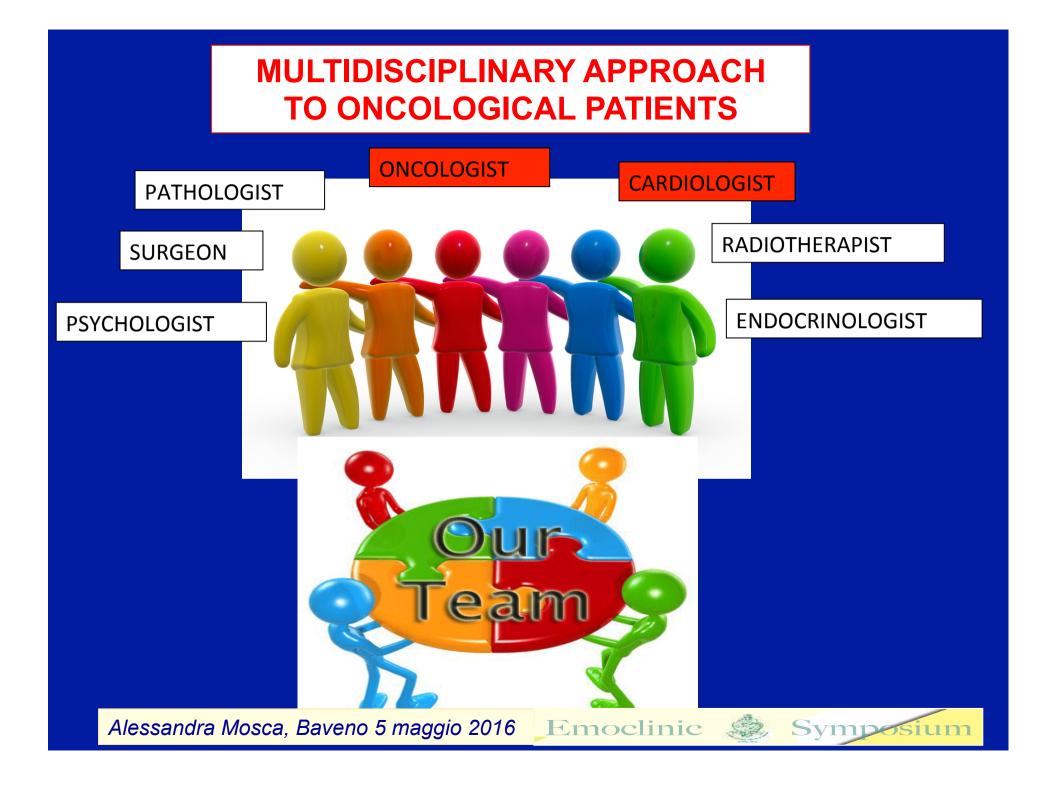
Le esigenze degli Oncologi: PRIMA della terapia oncologica

Le esigenze degli Oncologi: DOPO la terapia oncologica

Alessandra Mosca, Baveno 5 maggio 2016

Emoclinic

Symposium


CONCLUSIONI

-Diversi farmaci oncologici per diverse neoplasie solide, con diverse tossicità CV

-l pazienti oncologici sono molto eterogenei

-Non esistono attualmente Linee Guida validate per ottimali Inquadramento clinico e monitoraggio della tossicità cardiaca prima/durante/dopo terapia oncologica

Grazie Þer Vattenzione!

auenzy

